Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Bacteriol ; 183(8): 2624-33, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11274123

ABSTRACT

Staphylococcus epidermidis is a common pathogen in medical device-associated infections. Its major pathogenetic factor is the ability to form adherent biofilms. The polysaccharide intercellular adhesin (PIA), which is synthesized by the products of the icaADBC gene cluster, is essential for biofilm accumulation. In the present study, we characterized the gene locus inactivated by Tn917 insertions of two isogenic, icaADBC-independent, biofilm-negative mutants, M15 and M19, of the biofilm-producing bacterium S. epidermidis 1457. The insertion site was the same in both of the mutants and was located in the first gene, rsbU, of an operon highly homologous to the sigB operons of Staphylococcus aureus and Bacillus subtilis. Supplementation of Trypticase soy broth with NaCl (TSB(NaCl)) or ethanol (TSB(EtOH)), both of which are known activators of sigB, led to increased biofilm formation and PIA synthesis by S. epidermidis 1457. Insertion of Tn917 into rsbU, a positive regulator of alternative sigma factor sigma(B), led to a biofilm-negative phenotype and almost undetectable PIA production. Interestingly, in TSB(EtOH), the mutants were enabled to form a biofilm again with phenotypes similar to those of the wild type. In TSB(NaCl), the mutants still displayed a biofilm-negative phenotype. No difference in primary attachment between the mutants and the wild type was observed. Similar phenotypic changes were observed after transfer of the Tn917 insertion of mutant M15 to the independent and biofilm-producing strain S. epidermidis 8400. In 11 clinical S. epidermidis strains, a restriction fragment length polymorphism of the sigB operon was detected which was independent of the presence of the icaADBC locus and a biofilm-positive phenotype. Obviously, different mechanisms are operative in the regulation of PIA expression in stationary phase and under stress induced by salt or ethanol.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms/growth & development , Gene Expression Regulation, Bacterial , Phosphoric Monoester Hydrolases , Sigma Factor/metabolism , Staphylococcus epidermidis/physiology , Chromosome Mapping , Cloning, Molecular , DNA Transposable Elements , Ethanol/pharmacology , Humans , Mutagenesis, Insertional , Operon , Phenotype , Polymorphism, Restriction Fragment Length , Polysaccharides, Bacterial/genetics , Polysaccharides, Bacterial/metabolism , Sigma Factor/genetics , Sodium Chloride/pharmacology , Staphylococcus epidermidis/genetics , Staphylococcus epidermidis/metabolism
2.
Zentralbl Bakteriol ; 287(1-2): 85-92, 1998 Jan.
Article in English | MEDLINE | ID: mdl-9532267

ABSTRACT

Staphylococcus epidermidis phage 48 was used to efficiently transduce plasmid pTV1ts and a chromosomal Tn917 insertion M27 from S. epidermidis 13-1 to biofilm-producing clinical S. epidermidis isolates 1457, 9142, and 8400. The Tn917 insertion leading to the biofilm-negative phenotype of transposon mutant M10 was sequentially transduced to biofilm-producing S. epidermidis 1457 using S. epidermidis phage 48 and then, using the resulting biofilm-negative transductant 1457-M10 as a donor, into several unrelated biofilm-producing clinical S. epidermidis isolates using S. epidermidis phage 71. All resultant transductants displayed a completely biofilm-negative phenotype. In addition, S. epidermidis phage 71 was adapted to S. epidermidis 1457 and 8400, which allowed generalized transduction of transposon insertions in these wild-type strains. As Tn917 predominantly transposed into endogenous plasmids of all three strains used, an efficient system for chromosomal transposon mutagenesis was established by curing of S. epidermidis 1457 of a single endogenous plasmid p1457 by sodium dodecylsulfate treatment. After transduction of the resulting derivative, S. epidermidis 1457c with pTV1ts, insertion of transposon Tn917 to different sites of the chromosome of S. epidermidis 1457c was observed. Biofilm-producing S. epidermidis 1457c x pTV1ts was used to isolate a biofilm-negative transposon mutant (1457c-M3) with a chromosomal insertion apparently different from two previously isolated isogenic biofilm-negative transposon mutants, M10 and M11 (Mack, D., M. Nedelmann, A. Krokotsch, A. Schwarzkopf, J. Heesemann, and R. Laufs: Infect Immun 62 [1994] 3244-3253). S. epidermidis phage 71 was used to prove genetic linkage between transposon insertion and altered phenotype by generalized transduction. In combination with phage transduction, 1457c x pTV1ts will be a useful tool facilitating the study of bacterial determinants of the pathogenicity of S. epidermidis.


Subject(s)
Genetic Linkage/genetics , Staphylococcus epidermidis/genetics , Blotting, Southern , DNA Transposable Elements , Genetic Linkage/physiology , Staphylococcus Phages/growth & development , Staphylococcus epidermidis/isolation & purification , Transduction, Genetic/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...