Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(7): 8717-8732, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38326933

ABSTRACT

Urea electrolysis is a promising energy-efficient hydrogen production process with environmental benefits, but the lack of efficient and sustainable ampere-level current density electrocatalysts fabricated through simple methods is a major challenge for commercialization. Herein, we present an efficient and stable heterostructure electrocatalyst for full urea and water electrolysis in a convenient and time-efficient preparation manner. Overall, superhydrophilic/superaerophobic CoMn/CuNiP/NF exhibits exceptional performance for the hydrogen evolution reaction (HER) (-33.8, -184.4, and -234.8 mV at -10, -500, and -1000 mA cm-2, respectively), urea electro-oxidation reaction (UOR) [1.28, 1.43, and 1.51 V (vs RHE) at 10, 500, and 1000 mA cm-2, respectively], and oxygen evolution reaction (OER) [1.45, 1.67, and 1.74 V (vs RHE) at 10, 500, and 1000 mA cm-2, respectively]. Moreover, the superaerophobic CoMn/CuNiP/NF demonstrates promising potential in full urea (1.33, 1.57, and 1.60 V at 10, 500, and 1000 mA cm-2, respectively) and water (1.46 V, 1.78, and 1.86 at 10, 500, and 1000 mA cm-2, respectively) electrolysis. Based on X-ray photoelectron spectroscopy results, it was determined that the surface of the CoMn/CuNiP electrode was rich in redox pairs such as Ni2+/Ni3+, Cu+/Cu2+, Co2+/Co3+, and Mn2+/Mn3+, which are crucial for the formation of active sites for the OER and UOR, such as NiOOH, MnOOH, and CoOOH, thereby enhancing the catalytic activity. Besides, the in situ assembled CoMn/CuNiP/NF displayed highly stable performance for HER, OER, and UOR with high Faradaic efficiency for over 500 h. This research offers a simple and efficient method for manufacturing a high-efficiency and stable trifunctional electrocatalyst capable of delivering ampere-level current density in urea-assisted hydrogen production. Our density functional theory calculations reveal the potential of CoMn/CuNiP as an effective catalyst, enhancing the electronic properties and catalytic performance. The near-zero Gibbs free-energy change for HER underscores its promise, while reduced CO2 desorption energies and charge redistribution support efficient UOR. These findings signify CoMn/CuNiP's potential for electrochemical applications.

2.
Chem Commun (Camb) ; 58(21): 3545-3548, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35195642

ABSTRACT

We report Ni-Mn-Se supported on Ni foam as a highly active and stable bifunctional electrocatalyst that exhibits overpotentials of 28 and 122 mV to reach a current density of 10 mA cm-2 for the hydrogen evolution reaction (HER) and urea oxidation reaction (UOR), respectively, and maintains its stability for over 50 h in both reactions. In addition, an overall urea splitting cell voltage of 1.352 V is needed at the current density of 10 mA cm-2 for the optimized electrode.

3.
Nanoscale ; 11(35): 16621-16634, 2019 Sep 21.
Article in English | MEDLINE | ID: mdl-31460535

ABSTRACT

The development of a bi-functional active and stable catalyst for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is an important challenge in overall electrochemical water splitting. In this study, firstly, nickel nanocones (NNCs) were formed using electrochemical deposition, and then Ni-Co-Fe based mixed sulfide ultrathin nanosheets were obtained by directly depositing on the surface of the nanocones using the CV method. With a hierarchical structure of Ni-Fe-Co-S nanosheets, not only was a high active surface area created, but also the electron transfer and mass transfer were enhanced. This structure also led to the faster release of hydrogen bubbles from the surface. An overpotential value of 106 mV was required on the surface of this electrode to generate a current density of 10 mA cm-2 in the HER, whereas, for the OER, 207 mV overpotential was needed to generate a current density of 10 mA cm-2. Furthermore, this electrode required 1.54 V potential to generate a current density of 10 mA cm-2 in the total electrochemical water splitting. The resulting electrode also exhibited reasonable electrocatalytic stability, and after 10 hours of electrolysis in the overall water splitting reaction, the voltage change was negligible. This study introduces a simple, efficient, reasonable and cost-effective method of creating an effective catalyst for the overall water splitting process.

SELECTION OF CITATIONS
SEARCH DETAIL
...