Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Circulation ; 147(21): 1606-1621, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37066790

ABSTRACT

BACKGROUND: Pulmonary arterial hypertension (PAH) is a rare disease characterized by remodeling of the pulmonary arteries, increased vascular resistance, and right-sided heart failure. Genome-wide association studies of idiopathic/heritable PAH established novel genetic risk variants, including conserved enhancers upstream of transcription factor (TF) SOX17 containing 2 independent signals. SOX17 is an important TF in embryonic development and in the homeostasis of pulmonary artery endothelial cells (hPAEC) in the adult. Rare pathogenic mutations in SOX17 cause heritable PAH. We hypothesized that PAH risk alleles in an enhancer region impair TF-binding upstream of SOX17, which in turn reduces SOX17 expression and contributes to disturbed endothelial cell function and PAH development. METHODS: CRISPR manipulation and siRNA were used to modulate SOX17 expression. Electromobility shift assays were used to confirm in silico-predicted TF differential binding to the SOX17 variants. Functional assays in hPAECs were used to establish the biological consequences of SOX17 loss. In silico analysis with the connectivity map was used to predict compounds that rescue disturbed SOX17 signaling. Mice with deletion of the SOX17-signal 1 enhancer region (SOX17-4593/enhKO) were phenotyped in response to chronic hypoxia and SU5416/hypoxia. RESULTS: CRISPR inhibition of SOX17-signal 2 and deletion of SOX17-signal 1 specifically decreased SOX17 expression. Electromobility shift assays demonstrated differential binding of hPAEC nuclear proteins to the risk and nonrisk alleles from both SOX17 signals. Candidate TFs HOXA5 and ROR-α were identified through in silico analysis and antibody electromobility shift assays. Analysis of the hPAEC transcriptomes revealed alteration of PAH-relevant pathways on SOX17 silencing, including extracellular matrix regulation. SOX17 silencing in hPAECs resulted in increased apoptosis, proliferation, and disturbance of barrier function. With the use of the connectivity map, compounds were identified that reversed the SOX17-dysfunction transcriptomic signatures in hPAECs. SOX17 enhancer knockout in mice reduced lung SOX17 expression, resulting in more severe pulmonary vascular leak and hypoxia or SU5416/hypoxia-induced pulmonary hypertension. CONCLUSIONS: Common PAH risk variants upstream of the SOX17 promoter reduce endothelial SOX17 expression, at least in part, through differential binding of HOXA5 and ROR-α. Reduced SOX17 expression results in disturbed hPAEC function and PAH. Existing drug compounds can reverse the disturbed SOX17 pulmonary endothelial transcriptomic signature.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Mice , Animals , Hypertension, Pulmonary/metabolism , Genome-Wide Association Study , Endothelial Cells/metabolism , Pulmonary Arterial Hypertension/metabolism , Pulmonary Artery , Hypoxia/metabolism , Familial Primary Pulmonary Hypertension/metabolism , Transcription Factors/metabolism , HMGB Proteins/genetics , HMGB Proteins/metabolism , SOXF Transcription Factors/genetics , SOXF Transcription Factors/metabolism
3.
BMC Complement Altern Med ; 19(1): 278, 2019 Oct 22.
Article in English | MEDLINE | ID: mdl-31640743

ABSTRACT

BACKGROUND: Recent epidemiological and experimental studies suggest that cadmium and diabetes-related hyperglycemia may act synergistically to worsen metabolic regulation. The present study aims to evaluate the potential effects of Enhydra fluctuans extract in diabetes and dyslipidemia in cadmium (CdCl2) induced- normal and type 2 diabetic model rats. METHOD: Forty-eight Long-Evans rats were divided equally into the following six groups: Normal Control (N-C), Normal treated with CdCl2 (N-Cd), Normal treated with plant extract (N-P), Normal treated with both plant extract and CdCl2 (N-PCd), Diabetic treated with plant extract (DM-P) and Diabetic treated with both plant extract and CdCl2 (DM-PCd). Blood glucose and other biochemical parameters were estimated by the enzymatic colorimetric method. Histological analysis of liver and heart was done by the hematoxylin-eosin (H & E) method. RESULTS: Twenty-one days treatment of E. fluctuans extracts at a dose of 200 mg/kg significantly reduced blood glucose level in N-PCd and DM-PCd (p < 0.05), and DM-P (p < 0.01) group. The plant extract had no direct effects on total blood lipids but, it had beneficial effects on TG/HDL-C ratio in N-P and DM-PCd groups (p < 0.05). Cd induction significantly reduced body weight [(N-Cd, N-PCd, DM-PCd) (p < 0.01)], and induced liver [N-Cd (p < 0.05), N-PCd, p < 0.001] and renal impairment [N-Cd (p < 0.05)]. In bi-variate association, a significant positive correlation between serum glucose and SGPT (p < 0.05) as well as SGPT and TG/HDL ratio (p = 0.019) was found in DM-P and in the merged group. The histology of liver and heart showed severe damages including inflammation, nuclear pyknosis, loss of myocardial fibers, necrosis and fibrosis in the Cd treated groups compared to plant treated groups. CONCLUSION: E. fluctuans seems to have potent antihyperglycemic effects in diabetes and Cd toxicity along with partial antidyslipidemic properties in euglycemic and diabetic rats. Our study suggests a novel oral antihyperglycemic agent in the present environmental context.


Subject(s)
Asteraceae/chemistry , Cadmium/toxicity , Diabetes Mellitus, Type 2/drug therapy , Hyperglycemia/drug therapy , Hypoglycemic Agents/administration & dosage , Hypolipidemic Agents/administration & dosage , Plant Extracts/administration & dosage , Animals , Blood Glucose/metabolism , Cadmium/metabolism , Diabetes Mellitus, Type 2/metabolism , Disease Models, Animal , Female , Humans , Hyperglycemia/etiology , Hyperglycemia/metabolism , Lipid Metabolism/drug effects , Lipids/blood , Male , Rats , Rats, Long-Evans
SELECTION OF CITATIONS
SEARCH DETAIL
...