Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomarkers ; 22(3-4): 268-278, 2017.
Article in English | MEDLINE | ID: mdl-27321479

ABSTRACT

Circulating microRNAs (miRNAs) have been shown as promising biomarkers for various diseases. We investigated the predictive potential of circulating endothelium-enriched miR-126 in type 2 diabetes patients (T2D) without chronic complications and T2D patients with coronary artery diseases (CAD). The expression levels of circulating miR-126, determined by quantitative real time PCR, were decrease in peripheral blood of T2D patients and T2D with CAD compared with healthy controls. MiR-126 strongly associated with T2D and CAD, negatively correlated with LDL in CAD patients and differentiated between T2D patients, T2D patients with CAD and healthy subjects. Circulating miR-126 may serve as a biomarker for predicting patients with T2D and diabetic CAD.


Subject(s)
Coronary Artery Disease/complications , Diabetes Mellitus, Type 2/complications , MicroRNAs/blood , Biomarkers/blood , Case-Control Studies , Coronary Artery Disease/blood , Coronary Artery Disease/diagnosis , Diabetes Complications/blood , Diabetes Complications/diagnosis , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/diagnosis , Endothelium , Female , Humans , Male , Middle Aged
2.
Exp Ther Med ; 12(2): 815-822, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27446281

ABSTRACT

Circulating microRNAs (miRNAs) have been proposed as promising biomarkers for multiple diseases. miR-126 is reported to be associated with type 2 diabetes mellitus (T2D), diabetic nephropathy (DN) and end stage renal disease. The aim of this study was to investigate the expression of circulating miR-126 and to assess its potential as a blood-based biomarker for DN in T2D patients. In 52 patients with T2D without history of DN (with noromoalbuminuria), 50 patients with T2D and DN (29 with microalbuminuria and 21 with macroalbuminuria), and 50 non-diabetic healthy controls, the expression of circulating miR-126 in peripheral whole blood was evaluated by quantitative polymerase chain reaction. The expression levels of circulating miR-126 were significantly decreased in T2D patients and further decreased in DN patients compared with those in the controls. Multivariate logistic regression analysis confirmed the independent association of lower miR-126 levels with T2D [adjusted odds ratio (OR), 0.797; 95% confidence interval (CI), 0.613-0.960] and DN (adjusted OR, 0.513; 95% CI, 0.371-0.708). miR-126 levels were associated with the degree of albuminuria and showed significantly low expression in DN patients with microalbuminuria (adjusted OR, 0.781; 95% CI; 0.698-0.952) and further lower expression in DN patients with macroalbuminuria (adjusted OR, 0.433; 95% CI, 0.299-0.701), respectively compared with T2D patients with normoalbuminuria. miR-126 levels negatively correlated with albuminuria positively with glomerular filtration rate (P<0.05), and in addition, negatively correlated with fasting glucose, glycated hemoglobin, triglyceride and LDL (P<0.05). Stepwise multiple regression analysis identified albuminuria as a significant predictor of miR-126 (P<0.001). miR-126 in peripheral blood yielded area under the receiver operating characteristic curves of 0.854 (95% CI, 0.779-0.929) and 0.959 (95% CI, 0.916-1.000) in the differentiation of DN patients from T2D patients and DN patients from non-diabetic controls respectively. These data suggest that decreased expression of circulating miR-126 is associated with the development of DN in T2D patients, and may be a promising blood-based biomarker for DN risk estimation.

3.
Mol Med Rep ; 13(2): 1774-80, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26719045

ABSTRACT

Reactive oxygen species (ROS)-mediated disruption of mitochondrial respiratory function has been implicated in the complications of diabetes. The present study examined changes in the gene expression of mitochondrial DNA (mtDNA)-encoded subunits of electron transport chain complexes in response to high glucose-induced ROS overproduction in an in vitro model of diabetic nephropathy using human renal mesangial cells. Mitochondrial ROS generation was assessed by confocal microscopy and flow cytometry in the cells following culture in 5 and 25 mM glucose. The mRNA expression levels of nicotinamide adenine dinucleotide dehydrogenase 2 (ND2) of complex I, cytochrome b (CYTB) of complex III, cytochrome c oxidase (COI) of complex IV and ATPase 6 of complex V were analyzed by reverse transcription-quantitative polymerase chain reaction. The protein expression levels of ND2, CYTB, COI and ATPase 6 were analyzed by western blotting. A significant increase in mitochondrial ROS production was observed in the cells cultured in 25 mM glucose, compared with cells cultured in 5 mM glucose (P<0.05). The mRNA expression of ND2, CYTB, CO1 and ATPase 6 was significantly increased following culture in 25 mM glucose, compared with the cells cultured in 5 mM glucose (P<0.05). This increase in mRNA expression was accompanied by significant increases in protein expression following incubation in 25 mM glucose (P<0.05). The increase in mtDNA-encoded gene expression in the electron transport subunits following exposure to high glucose-induced ROS may be a compensatory response mechanism for the decline in mitochondrial function, which may be important in the development of diabetic nephropathy through enhanced ROS generation.


Subject(s)
DNA, Mitochondrial/genetics , Gene Expression Regulation/drug effects , Glucose/pharmacology , Mesangial Cells/metabolism , Reactive Oxygen Species/metabolism , Electron Transport/drug effects , Humans , Mesangial Cells/drug effects , Protein Subunits/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
4.
Cell Biol Int ; 40(1): 36-48, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26251331

ABSTRACT

The present study investigated the time-course effect of high-glucose-induced reactive oxygen species (ROS) on mitochondrial biogenesis and function in human renal mesangial cells and the effect of direct inhibition of ROS on mitochondria. The cells were cultured for 1, 4, and 7 days in normal glucose or high glucose in the presence and absence of Mn(III)tetrakis(4-benzoic acid)porphyrin chloride (MnTBAP) or catalase. Mitochondrial ROS production was assessed by confocal microscope. mtDNA copy number and peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α), nuclear respiratory factors 1 (NRF-1), and mitochondrial transcription factor A (TFAM) transcripts were analyzed by real-time PCR. PGC-1α, NRF-1, and TFAM proteins were analyzed by Western blotting. Mitochondrial function was determined by assessing mitochondrial membrane potential and adenosine triphosphate (ATP) levels. High glucose induced significant increases in mitochondrial superoxide and hydrogen peroxide (H2 O2 ) at day 1, which remained significantly elevated at days 4 and 7. The copy number of mtDNA and expression of PGC-1α, NRF-1, and TFAM were significantly increased at 1 day in high glucose but were significantly decreased at 4 and 7 days. A progressive decrease in mitochondrial membrane potential was observed at 1, 4, and 7 days in high glucose, and this was associated with decreased ATP levels. Treatment of cells with MnTBAP or catalase during high-glucose incubation attenuated ROS production and reversed the alterations in mitochondrial biogenesis and function. Increased mitochondrial biogenesis in human renal mesangial cells may be an early adaptive response to high-glucose-induced ROS, and prolonged ROS production induced by chronic high glucose decreased mitochondrial biogenesis and impaired mitochondrial function. Protection of mitochondria from high-glucose-induced ROS may provide a potential approach to retard the development and progression of diabetic nephropathy.


Subject(s)
Glucose/administration & dosage , Mesangial Cells/metabolism , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Adenosine Triphosphate/metabolism , Cells, Cultured , DNA Copy Number Variations , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , DNA-Binding Proteins/metabolism , Glucose/metabolism , Humans , Hydrogen Peroxide/metabolism , Membrane Potential, Mitochondrial , Mesangial Cells/cytology , Mitochondrial Proteins/metabolism , Organelle Biogenesis , Oxidative Stress/physiology , PPAR gamma/metabolism , Real-Time Polymerase Chain Reaction , Superoxides/metabolism , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...