Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 23(7)2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35408778

ABSTRACT

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) is a common clinical problem, leading to significant morbidity and mortality, and no effective pharmacotherapy exists. The problem of ARDS causing mortality became more apparent during the COVID-19 pandemic. Biotherapeutic products containing multipotent mesenchymal stromal cell (MMSC) secretome may provide a new therapeutic paradigm for human healthcare due to their immunomodulating and regenerative abilities. The content and regenerative capacity of the secretome depends on cell origin and type of cultivation (two- or three-dimensional (2D/3D)). In this study, we investigated the proteomic profile of the secretome from 2D- and 3D-cultured placental MMSC and lung fibroblasts (LFBs) and the effect of inhalation of freeze-dried secretome on survival, lung inflammation, lung tissue regeneration, fibrin deposition in a lethal ALI model in mice. We found that three inhaled administrations of freeze-dried secretome from 2D- and 3D-cultured placental MMSC and LFB protected mice from death, restored the histological structure of damaged lungs, and decreased fibrin deposition. At the same time, 3D MMSC secretome exhibited a more pronounced trend in lung recovery than 2D MMSC and LFB-derived secretome in some measures. Taking together, these studies show that inhalation of cell secretome may also be considered as a potential therapy for the management of ARDS in patients suffering from severe pneumonia, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), however, their effectiveness requires further investigation.


Subject(s)
Acute Lung Injury , COVID-19 , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Pneumonia , Respiratory Distress Syndrome , Acute Lung Injury/therapy , Animals , COVID-19/therapy , Cell Culture Techniques , Female , Fibrin , Humans , Mesenchymal Stem Cell Transplantation/methods , Mice , Pandemics , Placenta , Pregnancy , Proteomics , Respiratory Distress Syndrome/therapy , SARS-CoV-2 , Secretome
2.
Proteomics ; 22(3): e2000304, 2022 02.
Article in English | MEDLINE | ID: mdl-34674377

ABSTRACT

Myocyte differentiation is featured by adaptation processes, including mitochondria repopulation and cytoskeleton re-organization. The difference between monolayer and spheroid cultured cells at the proteomic level is uncertain. We cultivated alveolar mucosa multipotent mesenchymal stromal cells in spheroids in a myogenic way for the proper conditioning of ECM architecture and cell morphology, which induced spontaneous myogenic differentiation of cells within spheroids. Electron microscopy analysis was used for the morphometry of mitochondria biogenesis, and proteomic was used complementary to unveil events underlying differences between two-dimensional/three-dimensional myoblasts differentiation. The prevalence of elongated mitochondria with an average area of 0.097 µm2 was attributed to monolayer cells 7 days after the passage. The population of small mitochondria with a round shape and area of 0.049 µm2 (p < 0.05) was observed in spheroid cells cultured under three-dimensional conditions. Cells in spheroids were quantitatively enriched in proteins of mitochondria biogenesis (DNM1L, IDH2, SSBP1), respiratory chain (ACO2, ATP5I, COX5A), extracellular proteins (COL12A1, COL6A1, COL6A2), and cytoskeleton (MYL6, MYL12B, MYH10). Most of the Rab-related transducers were inhibited in spheroid culture. The proteomic assay demonstrated delicate mechanisms of mitochondria autophagy and repopulation, cytoskeleton assembling, and biogenesis. Differences in the ultrastructure of mitochondria indicate active biogenesis under three-dimensional conditions.


Subject(s)
Mesenchymal Stem Cells , Proteomics , Cell Differentiation , Cells, Cultured , Microscopy, Electron , Mucous Membrane , Spheroids, Cellular
3.
Pharmaceuticals (Basel) ; 14(12)2021 Dec 04.
Article in English | MEDLINE | ID: mdl-34959663

ABSTRACT

BACKGROUND: There is a need for better strategies to promote burn wound healing and prevent infection. The aim of our study was to develop an easy-to-use placental multipotent mesenchymal stromal cell (MMSC) secretome-based chitosan hydrogel (MSC-Ch-gel) and estimate its antimicrobial and regenerative activity in Staphylococcus aureus-infected burn wounds in rats. METHODS: Proteomic studies of the MMSC secretome revealed proteins involved in regeneration, angiogenesis, and defence responses. The MMSC secretome was collected from cultured cells and mixed with water-soluble chitosan to prepare the placental MSC-Ch-gel, which was stored in liquid phase at 4 °C. The wounds of rats with established II-IIIa-degree burns were then infected with S. aureus and externally covered with the MSC-Ch-gel. Three additional rat groups were treated with medical Vaseline oil, the antiseptic drug Miramistin®, or the drug Bepanthen® Plus. Skin wound samples were collected 4 and 8 days after burning for further microbiological and histological analysis. Blood samples were also collected for biochemical analysis. RESULTS: Application of the MSC-Ch-gel cleared the wound of microorganisms (S. aureus wasn't detected in the washings from the burned areas), decreased inflammation, enhanced re-epithelialisation, and promoted the formation of well-vascularised granulation tissue. CONCLUSIONS: MSC-Ch-gel effectively promotes infected wound healing in rats with third-degree burns. Gel preparation can be easily implemented into clinical practice.

4.
Biomed Res Int ; 2021: 8463161, 2021.
Article in English | MEDLINE | ID: mdl-34337053

ABSTRACT

Meso-Xanthin (Meso-Xanthin F199™) is a highly active antiaging injection drug of the latest generation. The main acting compound is fucoxanthin, supplemented with several growth factors, vitamins, and hyaluronic acid. Previous examination of fucoxanthin on melanocytes showed its ability to inhibit skin pigmentation through different signaling pathways focused on suppression of melanogenic-stimulating receptors. In turn, the anticancer property of fucoxanthin is realized through MAPK and PI3K pathways. We aimed to evaluate the effect of fucoxanthin and supplemented growth factors on melanocyte growth and transformation at a proteomic level. The effect of fucoxanthin on melanocytes cultivated in three-dimensional (3D) condition was examined using high-throughput proteomic and system biology approaches to disclose key molecular events of the targeted action. Our results demonstrated significant inhibition of cell differentiation and ubiquitination processes. We found that the negative regulation of PSME1 and PTGIS largely determines the inhibition of NF-κB and MAPK2. Besides, fucoxanthin selectively inhibits cell differentiation via negative regulation of Raf signaling and the upstream activation of IL-1 signaling. It is assumed that inhibition of Raf influences the Notch-4 signaling and switches off the MAPK/MAPK2 cascade. Blockage of MAPK/MAPK2 is feasible due to suppression of Ras and NF-κB by the addressed action of IKKB, IKK2, and TRAF6. Suggestively, Meso-Xanthin F199™ can manage processes of proliferative activity and inhibition of apoptosis due to composition of fucoxanthin and growth-stimulating factors, which may increase the risk of skin cancer development under certain condition.


Subject(s)
Apoptosis/drug effects , Cell Culture Techniques , MAP Kinase Signaling System , Melanocytes/cytology , Melanocytes/metabolism , Receptors, Notch/metabolism , Xanthine/pharmacology , Cell Proliferation/drug effects , Cell Shape/drug effects , Humans , MAP Kinase Signaling System/drug effects , Melanocytes/drug effects , Protein Interaction Maps/drug effects , Proteome/metabolism
6.
Front Cell Dev Biol ; 9: 572727, 2021.
Article in English | MEDLINE | ID: mdl-33898413

ABSTRACT

Bone formation during embryogenesis is driven by interacting osteogenesis and angiogenesis with parallel endothelial differentiation. Thence, all in vitro bioengineering techniques are aimed at pre-vascularization of osteogenic bioequivalents to provide better regeneration outcomes upon transplantation. Due to appearance of cell-cell and cell-matrix interactions, 3D cultures of adipose-derived stromal cells (ADSCs) provide a favorable spatial context for the induction of different morphogenesis processes, including vasculo-, angio-, and osteogenesis and, therefore, allow modeling their communication in vitro. However, simultaneous induction of multidirectional cell differentiation in spheroids from multipotent mesenchymal stromal cells (MMSCs) was not considered earlier. Here we show that arranging ADSCs into spheroids allows rapid and spontaneous acquiring of markers of both osteo- and angiogenesis compared with 2D culture. We further showed that this multidirectional differentiation persists in time, but is not influenced by classical protocols for osteo- or angio-differentiation. At the same time, ADSC-spheroids retain similar morphology and microarchitecture in different culture conditions. These findings can contribute to a better understanding of the fundamental aspects of autonomous regulation of differentiation processes and their cross-talks in artificially created self-organizing multicellular structures. This, in turn, can find a wide range of applications in the field of tissue engineering and regeneration.

7.
Int J Mol Sci ; 21(22)2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33228032

ABSTRACT

It is well known that blood lipoproteins (LPs) are multimolecular complexes of lipids and proteins that play a crucial role in lipid transport. High-density lipoproteins (HDL) are a class of blood plasma LPs that mediate reverse cholesterol transport (RCT)-cholesterol transport from the peripheral tissues to the liver. Due to this ability to promote cholesterol uptake from cell membranes, HDL possess antiatherogenic properties. This function was first observed at the end of the 1970s to the beginning of the 1980s, resulting in high interest in this class of LPs. It was shown that HDL are the prevalent class of LPs in several types of living organisms (from fishes to monkeys) with high resistance to atherosclerosis and cardiovascular disorders. Lately, understanding of the mechanisms of the antiatherogenic properties of HDL has significantly expanded. Besides the contribution to RCT, HDL have been shown to modulate inflammatory processes, blood clotting, and vasomotor responses. These particles also possess antioxidant properties and contribute to immune reactions and intercellular signaling. Herein, we review data on the structure and mechanisms of the pleiotropic biological functions of HDL from the point of view of their evolutionary role and complex dynamic nature.


Subject(s)
Atherosclerosis/blood , Cholesterol/metabolism , Homeostasis/physiology , Lipoproteins, HDL/physiology , Animals , Anti-Infective Agents/blood , Anti-Infective Agents/pharmacology , Anti-Inflammatory Agents/blood , Anti-Inflammatory Agents/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology , Atherosclerosis/genetics , Atherosclerosis/physiopathology , Biological Transport , Blood Coagulation/drug effects , Blood Coagulation/physiology , Cholesterol/chemistry , Humans , Lipoproteins, HDL/chemistry , Lipoproteins, HDL/classification , Lipoproteins, HDL/isolation & purification , Signal Transduction , Vasodilator Agents/blood , Vasodilator Agents/pharmacology , Vasomotor System/drug effects , Vasomotor System/physiology
8.
Future Sci OA ; 6(8): FSO610, 2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32983567

ABSTRACT

In the first part of our study, we substantiated that the embryonic reontogenesis and malignant growth (disintegrating growth) pathways are the same, but occur at different stages of ontogenesis, this mechanism is carried out in opposite directions. Cancer has been shown to be epigenetic-blocked redifferentiation and unfinished somatic embryogenesis. We formulated that only this approach of aging elimination has real prospects for a future that is fraught with cancer, as we will be able to convert this risk into a rejuvenation process through the continuous cycling of cell dedifferentiation-differentiation processes (permanent remorphogenesis). Here, we continue to develop the idea of looped ontogenesis and formulate the concept of the rejuvenation circle.

9.
Sci Rep ; 10(1): 12614, 2020 07 28.
Article in English | MEDLINE | ID: mdl-32724115

ABSTRACT

Biological self-assembly is crucial in the processes of development, tissue regeneration, and maturation of bioprinted tissue-engineered constructions. The cell aggregates-spheroids-have become widely used model objects in the study of this phenomenon. Existing approaches describe the fusion of cell aggregates by analogy with the coalescence of liquid droplets and ignore the complex structural properties of spheroids. Here, we analyzed the fusion process in connection with structure and mechanical properties of the spheroids from human somatic cells of different phenotypes: mesenchymal stem cells from the limbal eye stroma and epithelial cells from retinal pigment epithelium. A nanoindentation protocol was applied for the mechanical measurements. We found a discrepancy with the liquid drop fusion model: the fusion was faster for spheroids from epithelial cells with lower apparent surface tension than for mesenchymal spheroids with higher surface tension. This discrepancy might be caused by biophysical processes such as extracellular matrix remodeling in the case of mesenchymal spheroids and different modes of cell migration. The obtained results will contribute to the development of more realistic models for spheroid fusion that would further provide a helpful tool for constructing cell aggregates with required properties both for fundamental studies and tissue reparation.


Subject(s)
Models, Biological , Spheroids, Cellular/cytology , Biomarkers/metabolism , Cell Fusion , Cell Shape , Cells, Cultured , Elastic Modulus , Epithelial Cells/cytology , Epithelial Cells/ultrastructure , Humans , Limbus Corneae/cytology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/ultrastructure , Retinal Pigment Epithelium/cytology
10.
Article in English | MEDLINE | ID: mdl-32582665

ABSTRACT

Pigmentation is the result of melanin synthesis, which takes place in melanocytes, and its further distribution. A dysregulation in melanocytes' functionality can result in the loss of pigmentation, the appearance of pigment spots and melanoma development. Tissue engineering and the screening of new skin-lightening drugs require the development of simple and reproducible in vitro models with maintained functional activity. The aim of the study was to obtain and characterize spheroids from normal human melanocytes as a three-dimensional multicellular structure and as a test system for skin-lightening drug screening. Melanocytes are known to lose their ability to synthesize melanin in monolayer culture. When transferred under non-adhesive conditions in agarose multi-well plates, melanocytes aggregated and formed spheroids. As a result, the amount of melanin elevated almost two times within seven days. MelanoDerm™ (MatTek) skin equivalents were used as a comparison system. Cells in spheroids expressed transcription factors that regulate melanogenesis: MITF and Sox10, the marker of developed melanosomes-gp100, as well as tyrosinase (TYR)-the melanogenesis enzyme and melanocortin receptor 1 (MC1R)-the main receptor regulating melanin synthesis. Expression was maintained during 3D culturing. Thus, it can be stated that spheroids maintain melanocytes' functional activity compared to that in the multi-layered MelanoDerm™ skin equivalents. Culturing both spheroids and MelanoDerm™ for seven days in the presence of the skin-lightening agent fucoxanthin resulted in a more significant lowering of melanin levels in spheroids. Significant down-regulation of gp100, MITF, and Sox10 transcription factors, as well as 10-fold down-regulation of TYR expression, was observed in spheroids by day 7 in the presence of fucoxanthin, thus inhibiting the maturation of melanosomes and the synthesis of melanin. MelanoDerm™ samples were characterized by significant down-regulation of only MITF, Sox10 indicating that spheroids formed a more sensitive system allowed for quantitative assays. Collectively, these data illustrate that normal melanocytes can assemble themselves into spheroids-the viable structures that are able to accumulate melanin and maintain the initial functional activity of melanocytes. These spheroids can be used as a more affordable and easy-to-use test system than commercial skin equivalents for drug screening.

11.
Hum Cell ; 30(4): 249-257, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28612331

ABSTRACT

In the present study, we describe a new method of isolation and culture of human villous and extravillous trophoblasts from term placenta. The cultivation of trypsinized placental villous tissue explants, followed by the isolation of cells from outgrowth islets allows for obtaining a cytotrophoblast subpopulation that is free from contamination by other cell types. Compared to other methods, our protocol is mild, simple and effective, does not request costly reagents and provides isolation of the mononuclear cytotrophoblast cell populations free from contamination by other types of placental cells. The isolated cells proliferated and formed a pleomorphic monolayer, where cells fused into a small number of binuclear or polynuclear syncytiotrophoblasts. Isolated cytotrophoblast cells expressed the specific epithelial intermediate filament cytokeratin 7 (CK7), the epithelium-specific cell-cell adhesion molecule E-cadherin and were CD9-, CD45- and vimentin-negative. Cyto- and syncytiotrophoblasts obtained by this method can be used as a model or tool for the fundamental research of differentiation and function of human placental cells, and can provide a new understanding of drug distribution in placenta. Their combination with other in vitro cell models can be useful for studying a variety of other aspects concerning placental functions, which will provide new knowledge for understanding immunology, endocrinology and development of placenta.


Subject(s)
Cell Culture Techniques/methods , Cell Separation/methods , Placenta/cytology , Trophoblasts/cytology , Cadherins , Cells, Cultured , Female , Humans , Keratin-7 , Pregnancy , Trypsin
SELECTION OF CITATIONS
SEARCH DETAIL
...