Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 122023 07 26.
Article in English | MEDLINE | ID: mdl-37494277

ABSTRACT

Bronchi of chronic obstructive pulmonary disease (COPD) are the site of extensive cell infiltration, allowing persistent contact between resident cells and immune cells. Tissue fibrocytes interaction with CD8+ T cells and its consequences were investigated using a combination of in situ, in vitro experiments and mathematical modeling. We show that fibrocytes and CD8+ T cells are found in the vicinity of distal airways and that potential interactions are more frequent in tissues from COPD patients compared to those of control subjects. Increased proximity and clusterization between CD8+ T cells and fibrocytes are associated with altered lung function. Tissular CD8+ T cells from COPD patients promote fibrocyte chemotaxis via the CXCL8-CXCR1/2 axis. Live imaging shows that CD8+ T cells establish short-term interactions with fibrocytes, that trigger CD8+ T cell proliferation in a CD54- and CD86-dependent manner, pro-inflammatory cytokines production, CD8+ T cell cytotoxic activity against bronchial epithelial cells and fibrocyte immunomodulatory properties. We defined a computational model describing these intercellular interactions and calibrated the parameters based on our experimental measurements. We show the model's ability to reproduce histological ex vivo characteristics, and observe an important contribution of fibrocyte-mediated CD8+ T cell proliferation in COPD development. Using the model to test therapeutic scenarios, we predict a recovery time of several years, and the failure of targeting chemotaxis or interacting processes. Altogether, our study reveals that local interactions between fibrocytes and CD8+ T cells could jeopardize the balance between protective immunity and chronic inflammation in the bronchi of COPD patients.


Subject(s)
CD8-Positive T-Lymphocytes , Pulmonary Disease, Chronic Obstructive , Humans , Bronchi/pathology , Epithelial Cells/pathology , Inflammation/pathology
2.
J Theor Biol ; 564: 111448, 2023 05 07.
Article in English | MEDLINE | ID: mdl-36878400

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a highly prevalent lung disease characterized by chronic inflammation and tissue remodeling possibly induced by unusual interactions between fibrocytes and CD8+ T lymphocytes in the peribronchial area. To investigate this phenomenon, we developed a probabilistic cellular automata type model where the two types of cells follow simple local interaction rules taking into account cell death, proliferation, migration and infiltration. We conducted a rigorous mathematical analysis using multiscale experimental data obtained in control and disease conditions to estimate the model's parameters accurately. The simulation of the model is straightforward to implement, and two distinct patterns emerged that we can analyse quantitatively. In particular, we show that the change in fibrocyte density in the COPD condition is mainly the consequence of their infiltration into the lung during exacerbations, suggesting possible explanations for experimental observations in normal and COPD tissue. Our integrated approach that combines a probabilistic cellular automata model and experimental findings will provide further insights into COPD in future studies.


Subject(s)
Cellular Automata , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/metabolism , Lung/metabolism , Inflammation/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...