Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Food Nutr Bull ; 44(2_suppl): S58-S68, 2023 12.
Article in English | MEDLINE | ID: mdl-37850924

ABSTRACT

BACKGROUND: Twenty-seven African countries have committed to restore more than 100 million hectares of degraded land by 2030 as part of the African Forest Landscape Restoration Initiative (AFR100). In addition, for the same period of time, the African-led Great Green Wall initiative seeks to restore 100 million hectares of degraded agro-sylvo-pastoral lands in the Sahel. The current UN Decade on Ecosystem Restoration (2021-2030) moreover marks an unprecedented opportunity to shape future landscapes, and forge more biodiverse and nutritious food systems. Yet most large-scale restoration actions continue to be largely isolated from socioeconomic challenges facing dryland communities, not least food security and acute malnutrition. Such isolations contribute to low restoration successes and outcomes in Africa's drylands. At the same time, international interventions aimed at improving acute malnutrition in the drylands have not adequately considered the agriculture-nutrition linkages, particularly "pre-farm gate"-including consumption pathways which optimize the use of native plant diversity. OBJECTIVES: This article identifies priority action areas emerging from experiences over 5 years of restoration activities carried out in the Sahel through Food and Agriculture Organization's (FAO) Action Against Desertification Programme supporting the implementation of Africa's Great Green Wall. These actions aim to inform development and humanitarian interventions on the ground to render restoration interventions nutrition-sensitive and hence more effective in practice. RESULTS: Recognizing the symbiotic relationship between landscapes and livelihoods, FAO developed a blueprint for large-scale restoration that combines biophysical and socioeconomic aspects for the benefit of rural communities. The approach builds climate and nutritional resilience into its restoration interventions as a preventative approach to reverse land degradation and ultimately improve livelihoods, food security, and nutrition. CONCLUSIONS: FAO's experience demonstrated that what is planted and when has the potential to not only significantly improve biodiversity and reverse land degradation, but also positively influence nutrition outcomes. Future interventions in the drylands must involve joint efforts between nutritionists and natural resource managem prove both human and planetary health.


Plain language titleRestoring Africa's Drylands With Nutritious Native PlantsPlain language summaryThe African-led Great Green Wall (GGW) initiative seeks to restore 100 million hectares of degraded lands in the Sahel, in the context of the current UN Decade on Ecosystem Restoration by 2030, marking an unprecedented opportunity to shape future landscapes, and forge more biodiverse and nutritious food systems. At the same time, international interventions aimed at improving acute malnutrition have not adequately considered the agriculture-nutrition linkages, particularly "pre-farm gate," including consumption pathways which optimize the use of native plant diversity. Recognizing the symbiotic relationship between landscapes and livelihoods, Food and Agriculture Organization (FAO) developed a blueprint for large-scale restoration that combines biophysical and socioeconomic aspects for the benefit of rural communities and builds climate and nutritional resilience into its restoration interventions as a preventative approach to reverse land degradation and ultimately improve livelihoods, food security, and nutrition. This article identifies priority action areas emerging from experiences over 5 years of restoration activities carried out in the Sahel through FAO's Action Against Desertification supporting the implementation of the GGW. The results demonstrated that what is planted and when has the potential to not only significantly improve biodiversity and reverse land degradation but also positively influence nutrition outcomes. Future interventions in the drylands must involve joint efforts between nutritionists and natural resource management specialists in order to improve both human and planetary health.


Subject(s)
Ecosystem , Malnutrition , Animals , Humans , Chlorocebus aethiops , Conservation of Natural Resources , Biodiversity , Agriculture
2.
Science ; 366(6463)2019 10 18.
Article in English | MEDLINE | ID: mdl-31624184

ABSTRACT

Our study quantified the global tree restoration potential and its associated carbon storage potential under existing climate conditions. We received multiple technical comments, both supporting and disputing our findings. We recognize that several issues raised in these comments are worthy of discussion. We therefore provide a detailed common answer where we show that our original estimations are accurate.


Subject(s)
Climate , Trees , Carbon , Climate Change
3.
Plant Cell Rep ; 28(6): 883-9, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19274465

ABSTRACT

Encapsulated cocoa (Theobroma cacao L.) somatic embryos subjected to 0.08-1.25 M sucrose treatments were analyzed for embryo soluble sugar content, non-freezable water content, moisture level after desiccation and viability after desiccation and freezing. Results indicated that the higher the sucrose concentration in the treatment medium, the greater was the extent of sucrose accumulation in the embryos. Sucrose treatment greatly assisted embryo post-desiccation recovery since only 40% of the control embryos survived desiccation, whereas a survival rate of 60-95% was recorded for embryos exposed to 0.5-1.25 M sucrose. The non-freezable water content of the embryos was estimated at between 0.26 and 0.61 g H(2)O g(-1)dw depending on the sucrose treatment, and no obvious relationship could be found between the endogenous sucrose level and the amount of non-freezable water in the embryos. Cocoa somatic embryos could withstand the loss of a fraction of their non-freezable water without losing viability following desiccation. Nevertheless, the complete removal of potentially freezable water was not sufficient for most embryos to survive freezing.


Subject(s)
Cacao/embryology , Desiccation , Freezing , Sucrose/metabolism , Water/physiology , Cacao/physiology , Calorimetry , Cryopreservation/methods , Cryoprotective Agents/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...