Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(14)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39062850

ABSTRACT

In 2022, stroke emerged as the most significant cerebrovascular disorder globally, causing 6.55 million deaths. Microglia, crucial for CNS preservation, can exacerbate brain damage in ischemic stroke by triggering neuroinflammation. This process is mediated by receptors on microglia, triggering receptors expressed on myeloid cells (TREM-1 and TREM-2), which have contrasting roles in neuroinflammation. In this study, we recruited 38 patients within 4.5 h from the onset of ischemic stroke. The degree of severity was evaluated by means of the National Institutes of Health Stroke Scale (NIHSS) at admission (T0) and after one week of ischemic events (TW) and the Modified Rankin Scale (mRS) at three months. The plasma concentration of TREMs (sTREM) was analyzed by next-generation ELISA at T0 and TW. The sTREM-1 concentrations at T0 were associated with mRS, while the sTREM-2 concentrations at T0 were associated with both the NIHSS at T0 and the mRS. A strong correlation between sTREM-1 and sTREM-2 was observed, suggesting a dependent modulation of the levels. This study provides insights into the potential pathway of TREM-1 and TREM-2 as a future biomarker for stratifying high-risk patients with ischemic stroke.


Subject(s)
Biomarkers , Ischemic Stroke , Membrane Glycoproteins , Receptors, Immunologic , Severity of Illness Index , Triggering Receptor Expressed on Myeloid Cells-1 , Humans , Triggering Receptor Expressed on Myeloid Cells-1/metabolism , Triggering Receptor Expressed on Myeloid Cells-1/blood , Male , Female , Ischemic Stroke/metabolism , Ischemic Stroke/blood , Ischemic Stroke/pathology , Receptors, Immunologic/metabolism , Receptors, Immunologic/blood , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/blood , Aged , Middle Aged , Biomarkers/blood , Myeloid Cells/metabolism , Brain Ischemia/metabolism , Brain Ischemia/blood , Aged, 80 and over
2.
Biology (Basel) ; 11(10)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36290393

ABSTRACT

The possibility of characterizing the extracellular vesicles (EVs) based on parental cell surface markers and their content makes them a new attractive prognostic biomarker. Thus, our study aims to verify the role of EVs as relevant prognostic factors for acute and mid-term outcomes in ischemic stroke. Forty-seven patients with acute ischemic stroke were evaluated at admission (T0), immediately after recanalization treatment or after 2 h in non-treated patients (T1) and after one week (Tw) using the National Institutes of Health Stroke Scale (NIHSS), and after 3 months using the Modified Rankin Scale (mRS). Total count and characterization of EVs were assessed by Nanosight analysis and flow cytometry. The relationships between stroke outcomes and EV count were assessed through multivariable negative binomial regression models. We found that the amount of platelet-derived EVs at admission was positively associated with the severity of ischemic stroke at the onset as well as with the severity of mid-term outcome. Moreover, our study revealed that T-cell-derived EVs at admission were positively related to both early and mid-term ischemic stroke outcomes. Finally, T-cell-derived EVs at T1 were positively related to mid-term ischemic stroke outcome. The present study suggests that specific EV subtypes are associated with stroke severity and both short- and long-term outcomes. EVs could represent a valid tool to improve risk stratification in patients with ischemic stroke and post-recanalization treatment monitoring.

SELECTION OF CITATIONS
SEARCH DETAIL
...