Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 13: 830788, 2022.
Article in English | MEDLINE | ID: mdl-35663973

ABSTRACT

A strategy adopted to combat human immunodeficiency virus type-1 (HIV-1) infection is based on interfering with virus entry into target cells. In this study, we found that phosphatidylcholine (PC) liposomes reduced the expression of the CD4 receptor in human primary type-1 macrophages but not in CD4+ T cells. The down-regulation was specific to CD4, as any effect was not observed in CCR5 membrane expression. Moreover, the reduction of membrane CD4 expression required the Ca2+-independent protein kinase C (PKC), which in turn mediated serine phosphorylation in the intracytoplasmic tail of the CD4 receptor. Serine phosphorylation of CD4 was also associated with its internalization and degradation in acidic compartments. Finally, the observed CD4 downregulation induced by PC liposomes in human primary macrophages reduced the entry of both single-cycle replication and replication competent R5 tropic HIV-1. Altogether, these results show that PC liposomes reduce HIV entry in human macrophages and may impact HIV pathogenesis by lowering the viral reservoir.


Subject(s)
HIV Infections , HIV-1 , CD4 Antigens/metabolism , CD4-Positive T-Lymphocytes/metabolism , HIV-1/physiology , Humans , Liposomes , Macrophages/metabolism , Phosphatidylcholines/pharmacology , Serine
2.
Life (Basel) ; 10(11)2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33238410

ABSTRACT

Our study aimed to investigate the kinetics of SARS-CoV-2 RNA in bile and in different body fluids of two SARS-CoV-2 positive patients with acute cholecystitis by innovative droplet digital PCR (ddPCR) assays. For each patient, nasopharyngeal- and rectal swabs, bile, urine, and plasma samples were collected at different time points for SARS-CoV-2 RNA quantification by two ddPCR assays. For both patients, ddPCR revealed persistent and prolonged detection of viral RNA in the nasopharyngeal swab despite triple-negative or single-positive results by qRT-PCR. In Patient 1, SARS-CoV-2 RNA dropped more rapidly in bile and rectal-swab and declined slowly in nasopharyngeal swab and plasma, becoming undetectable in all compartments 97 days after symptoms started. Conversely, in patient 2, SARS-CoV-2 RNA was detected, even if at low copies, in all body samples (with the exception of urine) up to 75 days after the onset of symptoms. This study highlights that SARS-CoV-2 RNA can persist for a prolonged time in respiratory samples and in several biological samples despite negativity to qRT-PCR, supporting SARS-CoV-2's ability to provoke persistent and disseminated infection and therefore to contribute to extra-pulmonary clinical manifestations.

3.
Viruses ; 12(2)2020 02 23.
Article in English | MEDLINE | ID: mdl-32102257

ABSTRACT

Immune-suppression driven Hepatitis B Virus (HBV)-reactivation poses serious concerns since it occurs in several clinical settings and can result in severe forms of hepatitis. Previous studies showed that HBV strains, circulating in patients with HBV-reactivation, are characterized by an enrichment of immune-escape mutations in HBV surface antigen (HBsAg). Here, we focused on specific immune-escape mutations associated with the acquisition of N-linked glycosylation sites in HBsAg (NLGSs). In particular, we investigated profiles of NLGSs in 47 patients with immunosuppression-driven HBV-reactivation and we evaluated their impact on HBsAg-antigenicity and HBV-replication in vitro. At HBV-reactivation, despite a median serum HBV-DNA of 6.7 [5.3-8.0] logIU/mL, 23.4% of patients remained HBsAg-negative. HBsAg-negativity at HBV-reactivation correlated with the presence of >1 additional NLGSs (p < 0.001). These NLGSs are located in the major hydrophilic region of HBsAg (known to be the target of antibodies) and resulted from the single mutation T115N, T117N, T123N, N114ins, and from the triple mutant S113N+T131N+M133T. In vitro, NLGSs strongly alter HBsAg antigenic properties and recognition by antibodies used in assays for HBsAg-quantification without affecting HBsAg-secretion and other parameters of HBV-replication. In conclusion, additional NLGSs correlate with HBsAg-negativity despite HBV-reactivation, and hamper HBsAg-antigenicity in vitro, supporting the role of NGSs in immune-escape and the importance of HBV-DNA for a proper diagnosis of HBV-reactivation.


Subject(s)
Hepatitis B Antibodies/immunology , Hepatitis B Surface Antigens/chemistry , Hepatitis B Surface Antigens/immunology , Immune Evasion/genetics , Immunosuppression Therapy , Reinfection/virology , Aged , Cell Line , Female , Glycosylation , Hepatitis B Surface Antigens/genetics , Hepatitis B virus/genetics , Hepatitis B virus/immunology , Humans , Male , Middle Aged , Mutation , Virus Activation
4.
Oncotarget ; 8(9): 15704-15715, 2017 Feb 28.
Article in English | MEDLINE | ID: mdl-28152517

ABSTRACT

BACKGROUND: An impaired HBsAg-secretion can increase HBV oncogenic-properties. Here, we investigate genetic-determinants in HBsAg correlated with HBV-induced hepatocellular carcinoma (HCC), and their impact on HBsAg-secretion and cell-proliferation. METHODS: This study included 128 chronically HBV-infected patients: 23 with HCC (73.9% D; 26.1% A HBV-genotype), and 105 without cirrhosis/HCC (72.4% D, 27.6% A) as reference-group. The impact of mutations on HBsAg-secretion was assessed by measuring the ratio [secreted/intracellular HBsAg] until day 5 post-transfection. The impact of mutations on cell-cycle advancement was assessed by flow-cytometry. RESULTS: Two HBsAg mutations significantly correlated with HCC: P203Q (17.4% [4/23] in HCC vs 1.0% [1/105] in non-HCC, P=0.004); S210R (34.8% [8/23] in HCC vs 3.8% [4/105] in non-HCC, P <0.001); P203Q+S210R (17.4% [4/23] in HCC vs 0% [0/110] in non-HCC, P=0.001). Both mutations reside in trans-membrane C-terminal domain critical for HBsAg-secretion. In in-vitro experiments, P203Q, S210R and P203Q+S210R significantly reduced the ratio [secreted/intracellular HBsAg] compared to wt at each time-point analysed (P <0.05), supporting an impaired HBsAg-secretion. Furthermore, P203Q and P203Q+S210R increased the percentage of cells in S-phase compared to wt, indicating cell-cycle progression (P203Q:26±13%; P203Q+S210R:29±14%; wt:18%±9, P <0.01. Additionally, S210R increased the percentage of cells in G2/M-phase (26±8% for wt versus 33±6% for S210R, P <0.001). CONCLUSIONS: Specific mutations in HBsAg C-terminus significantly correlate with HBV-induced HCC. They hamper HBsAg-secretion and are associated with increased cellular proliferation, supporting their involvement in HCC-development. The identification of viral genetic markers associated with HCC is critical to identify patients at higher HCC-risk that may deserve intensive liver monitoring, and/or early anti-HBV therapy.


Subject(s)
Carcinoma, Hepatocellular/pathology , Hepatitis B Surface Antigens/genetics , Hepatitis B virus/genetics , Hepatitis B, Chronic/pathology , Liver Neoplasms/pathology , Mutation , Adult , Aged , Carcinoma, Hepatocellular/virology , Cell Cycle , Cell Proliferation , Female , Gene Frequency , Genotype , Hepatitis B Surface Antigens/metabolism , Hepatitis B virus/metabolism , Hepatitis B virus/physiology , Hepatitis B, Chronic/virology , Host-Pathogen Interactions , Humans , Liver Neoplasms/virology , Male , Middle Aged , Multivariate Analysis , Risk Factors
5.
Antimicrob Agents Chemother ; 59(8): 4870-81, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26055363

ABSTRACT

Incomplete APOBEC3G/F neutralization by a defective HIV-1Vif protein can promote genetic diversification by inducing G-to-A mutations in the HIV-1 genome. The HIV-1 Env V3 loop, critical for coreceptor usage, contains several putative APOBEC3G/F target sites. Here, we determined if APOBEC3G/F, in the presence of Vif-defective HIV-1 virus, can induce G-to-A mutations at V3 positions critical to modulation of CXCR4 usage. Peripheral blood mononuclear cells (PBMC) and monocyte-derived macrophages (MDM) from 2 HIV-1-negative donors were infected with CCR5-using 81.A-VifWT virus (i.e., with wild-type [WT] Vif protein), 81.A-VifE45G, or 81.A-VifK22E (known to incompletely/partially neutralize APOBEC3G/F). The rate of G-toA mutations was zero or extremely low in 81.A-VifWT- and 81.A-VifE45G-infected PBMC from both donors. Conversely, G-to-A enrichment was detected in 81.A-VifK22E-infected PBMC (prevalence ranging from 2.18% at 7 days postinfection [dpi] to 3.07% at 21 dpi in donor 1 and from 10.49% at 7 dpi to 8.69% at 21 dpi in donor 2). A similar scenario was found in MDM. G-to-A mutations occurred at 8 V3 positions, resulting in nonsynonymous amino acid substitutions. Of them, G24E and E25K strongly correlated with phenotypically/genotypically defined CXCR4-using viruses (P = 0.04 and 5.5e-7, respectively) and increased the CXCR4 N-terminal binding affinity for V3 (WT, -40.1 kcal/mol; G24E, -510 kcal/mol; E25K, -522 kcal/mol). The analysis of paired V3 and Vif DNA sequences from 84 HIV-1-infected patients showed that the presence of a Vif-defective virus correlated with CXCR4 usage in proviral DNA (P = 0.04). In conclusion, incomplete APOBEC3G/F neutralization by a single Vif amino acid substitution seeds a CXCR4-using proviral reservoir. This can have implications for the success of CCR5 antagonist-based therapy, as well as for the risk of disease progression.


Subject(s)
Cytosine Deaminase/genetics , HIV Infections/genetics , HIV-1/genetics , Mutation/genetics , Receptors, CCR5/genetics , Receptors, CXCR4/genetics , APOBEC Deaminases , Amino Acid Sequence , Amino Acid Substitution/genetics , Base Sequence , Cell Line , Cytidine Deaminase , Evolution, Molecular , HEK293 Cells , HIV Infections/virology , Humans , Leukocytes, Mononuclear/virology
6.
PLoS One ; 8(7): e68076, 2013.
Article in English | MEDLINE | ID: mdl-23874501

ABSTRACT

BACKGROUND: Dual/mixed-tropic HIV-1 strains are predominant in a significant proportion of patients, though little information is available regarding their replication-capacity and susceptibility against CCR5-antagonists in-vitro. The aim of the study was to analyze the replication-capacity and susceptibility to maraviroc of HIV-1 clinical isolates with different tropism characteristics in primary monocyte-derived-macrophages (MDM), peripheral-blood-mononuclear-cells (PBMC), and CD4(+) T-lymphocytes. METHODS: Twenty-three HIV-1 isolates were phenotipically and genotipically characterized as R5, X4 or dual (discriminated as R5(+)/X4, R5/X4, R5/X4(+)). Phenotypic-tropism was evaluated by multiple-cycles-assay on U87MG-CD4(+)-CCR5(+)-/CXCR4(+)-expressing cells. Genotypic-tropism prediction was obtained using Geno2Pheno-algorithm (false-positive-rate [FPR] = 10%). Replication-capacity and susceptibility to maraviroc were investigated in human-primary MDM, PBMC and CD4(+) T-cells. AMD3100 was used as CXCR4-inhibitor. Infectivity of R5/Dual/X4-viruses in presence/absence of maraviroc was assessed also by total HIV-DNA, quantified by real-time polymerase-chain-reaction. RESULTS: Among 23 HIV-1 clinical isolates, phenotypic-tropism-assay distinguished 4, 17 and 2 viruses with R5-tropic, dual/mixed-, and X4-tropic characteristics, respectively. Overall, viruses defined as R5(+)/X4-tropic were found with the highest prevalence (10/23, 43.5%). The majority of isolates efficiently replicated in both PBMC and CD4(+) T-cells, regardless of their tropism, while MDM mainly sustained replication of R5- or R5(+)/X4-tropic isolates; strong correlation between viral-replication and genotypic-FPR-values was observed in MDM (rho = 0.710;p-value = 1.4e-4). In all primary cells, maraviroc inhibited viral-replication of isolates not only with pure R5- but also with dual/mixed tropism (mainly R5(+)/X4 and, to a lesser extent R5/X4 and R5/X4(+)). Finally, no main differences by comparing the total HIV-DNA with the p24-production in presence/absence of maraviroc were found. CONCLUSIONS: Maraviroc is effective in-vitro against viruses with dual-characteristics in both MDM and lymphocytes, despite the potential X4-mediated escape. This suggests that the concept of HIV-entry through one of the two coreceptors "separately" may require revision, and that the use of CCR5-antagonists in patients with dual/mixed-tropic viruses may be a therapeutic-option that deserves further investigations in different clinical settings.


Subject(s)
Anti-HIV Agents/pharmacology , CCR5 Receptor Antagonists , HIV-1/drug effects , Lymphocytes/virology , Macrophages/virology , Cell Line , Gene Expression Regulation, Viral/drug effects , Genotype , HIV-1/physiology , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/virology , Lymphocytes/drug effects , Macrophages/drug effects , Phenotype , Receptors, CXCR4/antagonists & inhibitors , Viral Tropism , Virus Replication/drug effects
7.
Antiviral Res ; 90(1): 42-53, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21349294

ABSTRACT

Dual/mixed-tropic HIV-1 strains are predominant in a significative proportion of patients, though few information is available regarding the genetic characteristics, quasispecies composition, and susceptibility against CCR5-antagonists of the primary-isolates. For this reason, we investigated in deep details, both phenotypically and genotypically, the characteristics of 54 HIV-1 primary-isolates obtained from HIV-infected patients. Tropism was assessed by multiple-cycles phenotypic-assay on U87MG-CD4(+)-CCR5(+)-/CXCR4(+)-expressing cells. In vitro selection in PBMCs of X4-tropic viral strains following maraviroc-treatment was also performed. Phenotypic-assay reported pure R5-tropic viruses in 31 (57.4%) isolates, dual/mixed-tropic viruses in 22 (40.7%), and pure X4-tropic virus in only 1 (1.8%). Among dual/mixed-tropic isolates, 12 showed a remarkably higher replication-efficacy in CCR5-expressing cells (R5(+)/X4), and 2 in CXCR4-expressing cells (R5/X4(+)). Genotypic-tropism testing showed a correlation between PSSM-scores, geno2pheno false-positive-rate, and V3-net-charge with both CCR5-usage and syncytium-inducing ability. Moreover, specific gp120- and gp41-mutations were significantly associated with tropism and/or syncytium-inducing ability. Ultra-deep V3-pyrosequencing showed the presence of a swarm of genetically distinct species with a preference for CCR5-coreceptor not only in all pure R5-isolates, but also in 6/7 R5(+)/X4-tropic isolates. In both pure-X4 and R5/X4(+)-isolates, we observed extensive prevalence of X4-using species. In vitro selection-experiments with CCR5-inhibitor maraviroc (up to 2 months) showed no-emergence of X4-tropic variants for all R5- and R5(+)/X4-isolates tested (while X4-virus remained fully-resistant). In conclusion, our study shows that dual/mixed-tropic viruses are constituted by different species, whereby those with characteristics R5(+)/X4 are genotypically and phenotypically similar to the pure-R5 isolates; thus the use of CCR5-antagonists in patients with R5(+)/X4-tropic viruses may be a therapeutic-option that deserves further investigations.


Subject(s)
Anti-HIV Agents/pharmacology , Cyclohexanes/pharmacology , HIV Infections/virology , HIV-1/drug effects , HIV-1/physiology , Triazoles/pharmacology , Viral Tropism , Virus Replication/drug effects , Cell Line , HIV Envelope Protein gp120/genetics , HIV Envelope Protein gp41/genetics , HIV-1/genetics , HIV-1/growth & development , High-Throughput Nucleotide Sequencing , Humans , Maraviroc , Molecular Sequence Data , Receptors, Virus/metabolism , Virus Attachment
SELECTION OF CITATIONS
SEARCH DETAIL
...