Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 21135, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38036586

ABSTRACT

On March 5, 2022, a 12 kg meteoroid crossed the sky above Central Italy and was observed by three different observational systems: the PRISMA all-sky camera network (10 stations), the Italian national seismic network (61 stations), and a 4-element infrasound array. The corresponding datasets, each with its own resolution, provided three independent assessments of the trajectory, size and speed of the meteoroid. The bolide traveled across central Italy with an azimuth of 102 degrees, becoming visible at about 91 km above sea level with a velocity of about 15.4 km/s. Its visible trajectory lasted about 15 s. Reasonably, the residual portion of the ablated bolide terminated its path in the Adriatic Sea and could not be recovered. Seismic and infrasound data well match optical observations detecting the bolide Mach cone at 68 km above sea level with a back azimuth of 25 degrees with respect to the array. By comparing results from the three different systems, discrepancies are within the estimated uncertainties, thus confirming the mutual consistency of the adopted methodologies. Therefore, this study shows that different approaches can be integrated to improve the detection capability for bolide crossing the sky in monitored regions.

2.
Rev Sci Instrum ; 91(9): 094504, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-33003778

ABSTRACT

The Einstein Telescope (ET) is a proposed next-generation, underground gravitational-wave detector to be based in Europe. It will provide about an order of magnitude sensitivity increase with respect to the currently operating detectors and, also extend the observation band targeting frequencies as low as 3 Hz. One of the first decisions that needs to be made is about the future ET site following an in-depth site characterization. Site evaluation and selection is a complicated process, which takes into account science, financial, political, and socio-economic criteria. In this paper, we provide an overview of the site-selection criteria for ET, provide a formalism to evaluate the direct impact of environmental noise on ET sensitivity, and outline the necessary elements of a site-characterization campaign.

4.
Sci Data ; 7(1): 89, 2020 03 11.
Article in English | MEDLINE | ID: mdl-32161264

ABSTRACT

Mining, water-reservoir impoundment, underground gas storage, geothermal energy exploitation and hydrocarbon extraction have the potential to cause rock deformation and earthquakes, which may be hazardous for people, infrastructure and the environment. Restricted access to data constitutes a barrier to assessing and mitigating the associated hazards. Thematic Core Service Anthropogenic Hazards (TCS AH) of the European Plate Observing System (EPOS) provides a novel e-research infrastructure. The core of this infrastructure, the IS-EPOS Platform (tcs.ah-epos.eu) connected to international data storage nodes offers open access to large grouped datasets (here termed episodes), comprising geoscientific and associated data from industrial activity along with a large set of embedded applications for their efficient data processing, analysis and visualization. The novel team-working features of the IS-EPOS Platform facilitate collaborative and interdisciplinary scientific research, public understanding of science, citizen science applications, knowledge dissemination, data-informed policy-making and the teaching of anthropogenic hazards related to georesource exploitation. TCS AH is one of 10 thematic core services forming EPOS, a solid earth science European Research Infrastructure Consortium (ERIC) (www.epos-ip.org).

5.
Sci Rep ; 7(1): 14592, 2017 11 06.
Article in English | MEDLINE | ID: mdl-29109436

ABSTRACT

Exploiting supercritical geothermal resources represents a frontier for the next generation of geothermal electrical power plant, as the heat capacity of supercritical fluids (SCF),which directly impacts on energy production, is much higher than that of fluids at subcritical conditions. Reconnaissance and location of intensively permeable and productive horizons at depth is the present limit for the development of SCF geothermal plants. We use, for the first time, teleseismic converted waves (i.e. receiver function) for discovering those horizons in the crust. Thanks to the capability of receiver function to map buried anisotropic materials, the SCF-bearing horizon is seen as the 4km-depth abrupt termination of a shallow, thick, ultra-high (>30%) anisotropic rock volume, in the center of the Larderello geothermal field. The SCF-bearing horizon develops within the granites of the geothermal field, bounding at depth the vapor-filled heavily-fractured rock matrix that hosts the shallow steam-dominated geothermal reservoirs. The sharp termination at depth of the anisotropic behavior of granites, coinciding with a 2 km-thick stripe of seismicity and diffuse fracturing, points out the sudden change in compressibility of the fluid filling the fractures and is a key-evidence of deep fluids that locally traversed the supercritical conditions. The presence of SCF and fracture permeability in nominally ductile granitic rocks open new scenarios for the understanding of magmatic systems and for geothermal exploitation.

6.
Rev Sci Instrum ; 88(3): 034502, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28372423

ABSTRACT

GINGERino is a large frame laser gyroscope investigating the ground motion in the most inner part of the underground international laboratory of the Gran Sasso, in central Italy. It consists of a square ring laser with a 3.6 m side. Several days of continuous measurements have been collected, with the apparatus running unattended. The power spectral density in the seismic bandwidth is at the level of 10-10 (rad/s)/Hz. A maximum resolution of 30 prad/s is obtained with an integration time of few hundred seconds. The ring laser routinely detects seismic rotations induced by both regional earthquakes and teleseisms. A broadband seismic station is installed on the same structure of the gyroscope. First analysis of the correlation between the rotational and the translational signal is presented.

SELECTION OF CITATIONS
SEARCH DETAIL
...