Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38468524

ABSTRACT

BACKGROUND: Aegle marmelos, an Indian plant, has been extensively utilized by the people of the Indian subcontinent over about 5000 years. The leaves, bark, roots, and fruits, including seeds, are widely used to cure a variety of diseases in the Indian traditional system of medicine, Ayurveda, along with numerous folk medicines. By revealing the existence of significant bioactive chemicals, modern research has effectively substantiated the therapeutic effects of bael. OBJECTIVE: The objective of this study was to review the literature regarding A. marmelos geographical distribution, morphology, therapeutic benefits, and phytochemicals found in the bael leaves, fruits, and other parts of the plant that offer a wide range of pharmacological applications in neurological disorders. METHODOLOGY: A thorough literature search was conducted using five computerized databases, such as PubMed, Google Scholar, ScienceDirect, Elsevier, and Wiley Online Library (WOL), by using standard keywords "A. marmelos," "Geographical distribution," "Morphological description," "Ethnobotanical Uses," "Phytoconstituents" and "Neuroprotective activities" for review papers published between 1975 and 2023. A small number of earlier review articles focused on phyto-pharmacological potential of Aegle marmelos (L.) for neurological disorders. RESULTS: According to some research, Aegle marmelos extracts potentially have neuroprotective benefits. This is due to its capacity to alter cellular mechanisms that cause neuronal damage. CONCLUSION: Neurodegenerative illnesses usually induce permanent neuronal network loss overall the brain along with the spinal cord (CNS), resulting in chronic functional impairments. The review summarizes the multiple aspects and processes of A. marmelos extract and its components in several models of neurodegenerative diseases such as anxiety, epilepsy, depression, Parkinson's disease, Alzheimer's disease, and others. MDA, nitrite, TNF-, and IL-6 levels were dramatically elevated, whereas glutathione levels were significantly lowered in the hippocampus of STZ-treated rats. Furthermore, STZ-treated rats showed a substantial drop in catalase activity and an increase in AChE activity, indicating cholinergic hypofunction and neuronal injury. The neuroprotective ability of A. marmelos against STZ-induced oxidative stress and cognitive loss in rats suggests that it has therapeutic relevance in Alzheimer's disease (AD).

2.
Article in English | MEDLINE | ID: mdl-37817659

ABSTRACT

BACKGROUND: The "diabetic lung" has been identified as a possible target organ in diabetes, with abnormalities in ventilation control, bronchomotor tone, lung volume, pulmonary diffusing capacity, and neuroadrenergic bronchial innervation. OBJECTIVE: This review summarizes studies related to diabetic pneumopathy, pathophysiology and a number of pulmonary disorders including type 1 and type 2 diabetes. METHODOLOGY: Electronic searches were conducted on databases such as Pub Med, Wiley Online Library (WOL), Scopus, Elsevier, ScienceDirect, and Google Scholar using standard keywords "diabetes," "diabetes Pneumopathy," "Pathophysiology," "Lung diseases," "lung infection" for review articles published between 1978 to 2023 very few previous review articles based their focus on diabetic pneumopathy and its pathophysiology. RESULTS: Globally, the incidence of diabetes mellitus has been rising. It is a chronic, progressive metabolic disease. The "diabetic lung" may serve as a model of accelerated ageing since diabetics' rate of respiratory function deterioration is two to three-times higher than that of normal, non-smoking people. CONCLUSION: Diabetes-induced pulmonary dysfunction has not gained the attention it deserves due to a lack of proven causality and changes in cellular properties. The mechanism underlying a particular lung illness can still only be partially activated by diabetes but there is evidence that hyperglycemia is linked to pulmonary fibrosis in diabetic people.

3.
Curr Diabetes Rev ; 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37641999

ABSTRACT

Diabetes is a chronic metabolic condition that is becoming more common and is characterised by sustained hyperglycaemia and long-term health effects. Diabetes-related wounds often heal slowly and are more susceptible to infection because of hyperglycaemia in the wound beds. The diabetic lesion becomes harder to heal after planktonic bacterial cells form biofilms. A potential approach is the creation of hydrogels with many functions. High priority is given to a variety of processes, such as antimicrobial, pro-angiogenesis, and general pro-healing. Diabetes problems include diabetic amputations or chronic wounds (DM). Chronic diabetes wounds that do not heal are often caused by low oxygen levels, increased reactive oxygen species, and impaired vascularization. Several types of hydrogels have been developed to get rid of contamination by pathogens; these hydrogels help to clean up the infection, reduce wound inflammation, and avoid necrosis. This review paper will focus on the most recent improvements and breakthroughs in antibacterial hydrogels for treating chronic wounds in people with diabetes. Prominent and significant side effects of diabetes mellitus include foot ulcers. Antioxidants, along with oxidative stress, are essential to promote the healing of diabetic wounds. Some of the problems that can come from a foot ulcer are neuropathic diabetes, ischemia, infection, inadequate glucose control, poor nutrition, also very high morbidity. Given the worrying rise in diabetes and, by extension, diabetic wounds, future treatments must focus on the rapid healing of diabetic wounds.

SELECTION OF CITATIONS
SEARCH DETAIL
...