Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Ther ; 23(4): 520-531, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38324336

ABSTRACT

Relapsed or refractory B-cell acute lymphoblastic leukemia (R/R B-ALL) and lymphomas have poor patient outcomes; novel therapies are needed. CD22 is an attractive target for antibody-drug conjugates (ADCs), being highly expressed in R/R B-ALL with rapid internalization kinetics. ADCT-602 is a novel CD22-targeting ADC, consisting of humanized mAb hLL2-C220, site specifically conjugated to the pyrrolobenzodiazepine dimer-based payload tesirine. In preclinical studies, ADCT-602 demonstrated potent, specific cytotoxicity in CD22-positive lymphomas and leukemias. ADCT-602 was specifically bound, internalized, and trafficked to lysosomes in CD22-positive tumor cells; after cytotoxin release, DNA interstrand crosslink formation persisted for 48 hours. In the presence of CD22-positive tumor cells, ADCT-602 caused bystander killing of CD22-negative tumor cells. A single ADCT-602 dose led to potent, dose-dependent, in vivo antitumor activity in subcutaneous and disseminated human lymphoma/leukemia models. Pharmacokinetic analyses (rat and cynomolgus monkey) showed excellent stability and tolerability of ADCT-602. Cynomolgus monkey B cells were efficiently depleted from circulation after one dose. Gene signature association analysis revealed IRAK1 as a potential marker for ADCT-602 resistance. Combining ADCT-602 + pacritinib was beneficial in ADCT-602-resistant cells. Chidamide increased CD22 expression on B-cell tumor surfaces, increasing ADCT-602 activity. These data support clinical testing of ADCT-602 in R/R B-ALL (NCT03698552) and CD22-positive hematologic cancers.


Subject(s)
Antineoplastic Agents , Hematologic Neoplasms , Immunoconjugates , Lymphoma, B-Cell , Humans , Rats , Animals , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Macaca fascicularis , Antineoplastic Agents/therapeutic use , Lymphoma, B-Cell/drug therapy , Hematologic Neoplasms/drug therapy , Sialic Acid Binding Ig-like Lectin 2
2.
Mol Oncol ; 17(10): 2090-2108, 2023 10.
Article in English | MEDLINE | ID: mdl-37518985

ABSTRACT

Promyelocytic leukemia protein (PML) modulates diverse cell functions that contribute to both tumor suppressor and pro-oncogenic effects, depending on the cellular context. We show here that PML knockdown (KD) in MDA-MB-231, but not MCF7, breast cancer cells, prolonged stem-cell-like survival, and increased cell proliferation and migration, which is in line with gene-enrichment results from their RNA sequencing analysis. Of note, increased migration was accompanied by higher levels of the epithelial-mesenchymal transition (EMT) regulator Twist-related protein 2 (TWIST2). We showed here that PML binds to TWIST2 via its basic helix-loop-helix (bHLH) region and functionally interferes with the suppression of the epithelial target of TWIST2, CD24. In addition, PML ablation in MDA-MB-231 cells led to higher protein levels of hypoxia-inducible factor 1-alpha (HIF1a), resulting in a higher cell hypoxic response. Functionally, PML directly suppressed the induction of the HIF1a target gene vascular endothelial growth factor A (VEGFa). In line with these results, tumor xenografts of MDA-MB-231 PML-KD cells had enhanced aggressive properties, including higher microvessel density, faster local growth, and higher metastatic ability, with a preference for lung. Collectively, PML suppresses the cancer aggressive behavior by multiple mechanisms that impede both the HIF-hypoxia-angiogenic and EMT pathways.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/pathology , Promyelocytic Leukemia Protein/genetics , Vascular Endothelial Growth Factor A , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , Transcription Factors/genetics , Cell Movement
3.
Mol Oncol ; 13(6): 1369-1387, 2019 06.
Article in English | MEDLINE | ID: mdl-30927552

ABSTRACT

The multitasking promyelocytic leukemia (PML) protein was originally recognized as a tumor-suppressive factor, but more recent evidence has implicated PML in tumor cell prosurvival actions and poor patient prognosis in specific cancer settings. Here, we report that inducible PMLIV expression inhibits cell proliferation as well as self-renewal and impairs cell cycle progression of breast cancer cell lines in a reversible manner. Transcriptomic profiling identified a large number of PML-deregulated genes associated with various cell processes. Among them, cell cycle- and division-related genes and their cognitive regulators are highly ranked. In this study, we focused on previously unknown PML targets, namely the Forkhead transcription factors. PML suppresses the Forkhead box subclass M1 (FOXM1) transcription factor at both the RNA and protein levels, along with many of its gene targets. We show that FOXM1 interacts with PMLIV primarily via its DNA-binding domain and dynamically colocalizes in PML nuclear bodies. In parallel, PML modulates the activity of Forkhead box O3 (FOXO3), a factor opposing certain FOXM1 activities, to promote cell survival and stress resistance. Thus, PMLIV affects the balance of FOXO3 and FOXM1 transcriptional programs by acting on discrete gene subsets to favor both growth inhibition and survival. Interestingly, PMLIV-specific knockdown mimicked ectopic expression vis-à-vis loss of proliferative ability and self-renewal, but also led to loss of survival ability as shown by increased apoptosis. We propose that divergent or similar effects on cell physiology may be elicited by high or low PMLIV levels dictated by other concurrent genetic or epigenetic cancer cell states that may additionally account for its disparate effects in various cancer types.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Forkhead Transcription Factors/metabolism , Promyelocytic Leukemia Protein/metabolism , Blotting, Western , Breast Neoplasms/genetics , Cell Cycle/genetics , Cell Cycle/physiology , Cell Line, Tumor , Cell Proliferation/genetics , Cell Proliferation/physiology , Fluorescent Antibody Technique , Forkhead Box Protein M1/genetics , Forkhead Box Protein M1/metabolism , Forkhead Transcription Factors/genetics , HEK293 Cells , Humans , Immunoprecipitation , MCF-7 Cells , Oligonucleotide Array Sequence Analysis , Promyelocytic Leukemia Protein/genetics
4.
Methods Mol Biol ; 1890: 77-90, 2019.
Article in English | MEDLINE | ID: mdl-30414146

ABSTRACT

FOXO3 is a tumor suppressor that orchestrates the expression of genes that regulate cell cycle progression, apoptosis, metabolism, oxidative stress, and other important cellular processes. Its inactivation is closely associated with tumorigenesis and cancer progression. On the other hand, sirtuin proteins have been demonstrated to be able to deacetylate, thus causing FOXO3 inactivation at the posttranslational level. Therefore, targeting sirtuin proteins renders new avenues for breast cancer treatment. Here, we describe three procedures for studying FOXO3 posttranslational modifications controlled by sirtuin proteins in cancer cells.


Subject(s)
Forkhead Transcription Factors/metabolism , Protein Processing, Post-Translational , Acetylation , Blotting, Western , Cell Line , Cells, Cultured , Fluorescent Antibody Technique , Gene Expression , Humans , Immunoprecipitation , RNA, Small Interfering/genetics , Transfection
5.
Biochim Biophys Acta Gene Regul Mech ; 1860(5): 537-542, 2017 May.
Article in English | MEDLINE | ID: mdl-27989934

ABSTRACT

Nuclear Factor Y (NF-Y) was first described as one of the CCAAT binding factors. Although CCAAT motifs were found to be present in various genes, NF-Y attracted a lot of interest early on, due to its role in Major Histocompatibility Complex (MHC) gene regulation. MHC genes are crucial in immune response and show peculiar expression patterns. Among other conserved elements on MHC promoters, an NF-Y binding CCAAT box was found to contribute to MHC transcriptional regulation. NF-Y along with other DNA binding factors assembles in a stereospecific manner to form a multiprotein scaffold, the MHC enhanceosome, which is necessary but not sufficient to drive transcription. Transcriptional activation is achieved by the recruitment of yet another factor, the class II transcriptional activator (CIITA). In this review, we briefly discuss basic findings on MHCII transcription regulation and we highlight NF-Y different modes of function in MHCII gene activation. This article is part of a Special Issue entitled: Nuclear Factor Y in Development and Disease, edited by Prof. Roberto Mantovani.


Subject(s)
CCAAT-Binding Factor/immunology , Histocompatibility Antigens Class II/immunology , Transcription, Genetic/immunology , Transcriptional Activation/immunology , Animals , CCAAT-Binding Factor/genetics , Histocompatibility Antigens Class II/genetics , Humans , Transcription, Genetic/genetics , Transcriptional Activation/genetics
6.
Nanomedicine (Lond) ; 8(7): 1127-35, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23384701

ABSTRACT

AIM: The conventional clinical formulation of paclitaxel (PTX), Taxol®, consists of Cremophor® EL (CrEL) and ethanol. CrEL-formulated PTX is associated with acute hypersensitivity reactions, anemia and cardiovascular events. In this study, the authors investigated the effects of CrEL-PTX on red blood cells (RBCs) and compared these with the effects observed after exposure to the novel nanoparticle albumin-bound PTX, marketed as Abraxane®. RESULTS: The authors demonstrate that CrEL is primarily responsible for RBC lysis and induction of phosphatidylserine exposure. Phosphatidylserine-exposing RBCs showed increased association with endothelial cells in culture. The authors also identified CrEL as being responsible for vesiculation of RBCs. This is the first time that excipients have been shown to be involved in microvesicle formation. Microvesicles were taken up by endothelial cells. CONCLUSION: These results offer new insights into the side effect profile of Taxol, which is likely to have implications for patients with erythrocyte disorders. Abraxane did not induce any of these effects on RBCs, indicating that the choice of excipients can have a pronounced influence on the efficacy and side effects of drug molecules.


Subject(s)
Erythrocytes/drug effects , Glycerol/analogs & derivatives , Paclitaxel/adverse effects , Paclitaxel/chemistry , Phosphatidylserines/adverse effects , Phosphatidylserines/chemistry , Cells, Cultured , Chemistry, Pharmaceutical , Erythrocytes/cytology , Flow Cytometry , Glycerol/adverse effects , Glycerol/chemistry , Hemolysis/drug effects , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/drug effects , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...