Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Cell Mater ; 5: 29-39; discussion 39-40, 2003 Jun 30.
Article in English | MEDLINE | ID: mdl-14562270

ABSTRACT

Tissue engineering is a new and exciting technique which has the potential to create tissues and organs de novo. It involves the in vitro seeding and attachment of human cells onto a scaffold. These cells then proliferate, migrate and differentiate into the specific tissue while secreting the extracellular matrix components required to create the tissue. It is evident, therefore, that the choice of scaffold is crucial to enable the cells to behave in the required manner to produce tissues and organs of the desired shape and size. Current scaffolds, made by conventional scaffold fabrication techniques, are generally foams of synthetic polymers. The cells do not necessarily recognise such surfaces, and most importantly cells cannot migrate more than 500 microm from the surface. The lack of oxygen and nutrient supply governs this depth. Solid freeform fabrication (SFF) uses layer-manufacturing strategies to create physical objects directly from computer-generated models. It can improve current scaffold design by controlling scaffold parameters such as pore size, porosity and pore distribution, as well as incorporating an artificial vascular system, thereby increasing the mass transport of oxygen and nutrients into the interior of the scaffold and supporting cellular growth in that region. Several SFF systems have produced tissue engineering scaffolds with this concept in mind which will be the main focus of this review. We are developing scaffolds from collagen and with an internal vascular architecture using SFF. Collagen has major advantages as it provides a favourable surface for cellular attachment. The vascular system allows for the supply of nutrients and oxygen throughout the scaffold. The future of tissue engineering scaffolds is intertwined with SFF technologies.


Subject(s)
Tissue Engineering/instrumentation , Tissue Engineering/methods , Biocompatible Materials/chemical synthesis , Cells, Cultured , Humans , Organoids/metabolism , Polymers/chemical synthesis
2.
Biomaterials ; 24(8): 1487-97, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12527290

ABSTRACT

Novel collagen scaffolds possessing predefined and reproducible internal channels with widths of 135 microm and greater have been produced. The process employed to make the collagen scaffold utilises a sacrificial mould, manufactured using solid freeform fabrication technology, and critical point drying technique. A computer aided design (CAD) file of the mould to be produced is created. This mould is manufactured using a phase change ink-jet printer. A dispersion of collagen is then cast into the mould and frozen. The mould is dissolved away with ethanol and the collagen scaffold is then critical point dried with liquid carbon dioxide. The effect of processing on the tertiary structure of collagen is assessed by monitoring the wavenumber of the N-H stretching vibration peak using Fourier transform infra-red spectroscopy and it is found that processing does not denature the collagen. Ultraviolet-visual spectroscopy was used to detect the presence of any contamination from the sacrificial mould on the collagen. The ability to use computer aided design and manufacture (CAD/CAM) provides a route to optimise scaffold designs using collagen in tissue engineering applications.


Subject(s)
Biocompatible Materials , Collagen , Tissue Engineering/methods , Animals , Cattle , Collagen/chemistry , Computer-Aided Design , Materials Testing , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...