Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
World J Microbiol Biotechnol ; 40(9): 264, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990244

ABSTRACT

Bentonite is an integral part of the engineered barrier system (EBS) in deep geological repositories (DGR) for nuclear waste, but its indigenous microorganisms may jeopardize long-term EBS integrity. To predict microbial activity in DGRs, it is essential to understand microbial reactions to the early hot phase of DGR evolution. Two bentonites (BCV and MX-80) with varied bentonite/water ratios and saturation levels (compacted to 1600 kg.m- 3 dry density/powder/suspension), were subjected to heat (90-150 °C) and irradiation (0.4 Gy.h- 1) in the long-term experiments (up to 18 months). Molecular-genetic, microscopic, and cultivation-based techniques assessed microbial survivability. Exposure to 90 °C and 150 °C notably diminished microbial viability, irrespective of bentonite form, with negligible impacts from irradiation or sample type compared to temperature. Bentonite powder samples exhibited microbial recovery after 90 °C heating for up to 6 months but not 12 months in most cases; exposure to 150 °C had an even stronger effect. Further long-term experiments at additional temperatures combined with the mathematical prediction of temperature evolution in DGR are recommended to validate the possible evolution and spatial distribution of microbially depleted zones in bentonite buffer around the waste canisters and refine predictions of microbial effects over time in the DGR.


Subject(s)
Bacteria , Bentonite , Gamma Rays , Hot Temperature , Microbial Viability , Bentonite/chemistry , Microbial Viability/radiation effects , Bacteria/classification , Bacteria/radiation effects , Bacteria/genetics , Bacteria/growth & development , Radioactive Waste/analysis , Soil Microbiology
2.
World J Microbiol Biotechnol ; 40(1): 41, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38071262

ABSTRACT

As bentonite hosts a diverse spectrum of indigenous microorganisms with the potential to influence the long-term stability of deep geological repositories, it is essential to understand the factors influencing microbial activity under repository conditions. Here, we focus on two factors, i.e., temperature and swelling pressure, using a suspension of Cerny Vrch bentonite to boost microbial activity and evaluate microbial response. Suspensions were exposed either to different pressures (10, 12 and 15 MPa; to simulate the effect of swelling pressure) or elevated temperatures (60, 70, 80 and 90 °C; to simulate the effect of cannister heating) for four weeks. Each treatment was followed by a period of anaerobic incubation at atmospheric pressure/laboratory temperature to assess microbial recovery after treatment. Microbial load and community structure were then estimated using molecular-genetic methods, with presence of living cells confirmed through microscopic analysis. Our study demonstrated that discrete application of pressure did not influence on overall microbial activity or proliferation, implying that pressure evolution during bentonite swelling is not the critical factor responsible for microbial suppression in saturated bentonites. However, pressure treatment caused significant shifts in microbial community structure. We also demonstrated that microbial activity decreased with increasing temperature, and that heat treatment strongly influenced bentonite microbial community structure, with several thermophilic taxa identified. A temperature of 90 °C proved to be limiting for microbial activity and proliferation in all bentonite suspensions. Our study emphasizes the crucial role of a deep understanding of microbial activity under repository-relevant conditions in identifying possible strategies to mitigate the microbial potential within the deep geological repository and increase its long-term stability and safety.


Subject(s)
Bentonite , Radioactive Waste , Bentonite/analysis , Bentonite/chemistry , Radioactive Waste/analysis , Temperature , Chemical Phenomena , Cell Proliferation
3.
Microsc Microanal ; 22(1): 189-98, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26790877

ABSTRACT

Different quartz types from several localities in the Czech Republic and Sweden were examined by polarizing microscopy combined with cathodoluminescence (CL) microscopy, spectroscopy, and petrographic image analysis, and tested by use of an accelerated mortar bar test (following ASTM C1260). The highest alkali-silica reaction potential was indicated by very fine-grained chert, containing significant amounts of fine-grained to cryptocrystalline matrix. The chert exhibited a dark red CL emission band at ~640 nm with a low intensity. Fine-grained orthoquartzites, as well as fine-grained metamorphic vein quartz, separated from phyllite exhibited medium expansion values. The orthoquartzites showed various CL of quartz grains, from blue through violet, red, and brown. Two CL spectral bands at ~450 and ~630 nm, with various intensities, were detected. The quartz from phyllite displayed an inhomogeneous dark red CL with two CL spectral bands of low intensities at ~460 and ~640 nm. The massive coarse-grained pegmatite quartz from pegmatite was assessed to be nonreactive and displayed a typical short-lived blue CL (~480 nm). The higher reactivity of the fine-grained hydrothermal quartz may be connected with high concentrations of defect centers, and probably with amorphized micro-regions in the quartz, respectively; indicated by a yellow CL emission (~570 nm).


Subject(s)
Alkalies/analysis , Microscopy, Polarization , Quartz/chemistry , Silicon Dioxide/analysis , Spectrum Analysis , Czech Republic , Sweden
SELECTION OF CITATIONS
SEARCH DETAIL
...