Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Neuroscience ; 154(1): 127-38, 2008 Jun 12.
Article in English | MEDLINE | ID: mdl-18343587

ABSTRACT

The strength of synapses between auditory nerve (AN) fibers and ventral cochlear nucleus (VCN) neurons is an important factor in determining the nature of neural integration in VCN neurons of different response types. Synaptic strength was analyzed using cross-correlation of spike trains recorded simultaneously from an AN fiber and a VCN neuron in anesthetized cats. VCN neurons were classified as chopper, primarylike, and onset using previously defined criteria, although onset neurons usually were not analyzed because of their low discharge rates. The correlograms showed an excitatory peak (EP), consistent with monosynaptic excitation, in AN-VCN pairs with similar best frequencies (49% 24/49 of pairs with best frequencies within +/-5%). Chopper and primarylike neurons showed similar EPs, except that the primarylike neurons had shorter latencies and shorter-duration EPs. Large EPs consistent with end bulb terminals on spherical bushy cells were not observed, probably because of the low probability of recording from one. The small EPs observed in primarylike neurons, presumably spherical bushy cells, could be derived from small terminals that accompany end bulbs on these cells. EPs on chopper or primarylike-with-notch neurons were consistent with the smaller synaptic terminals on multipolar and globular bushy cells. Unexpectedly, EPs were observed only at sound levels within about 20 dB of threshold, showing that VCN responses to steady tones shift from a 1:1 relationship between AN and VCN spikes at low sound levels to a more autonomous mode of firing at high levels. In the high level mode, the pattern of output spikes seems to be determined by the properties of the postsynaptic spike generator rather than the input spike patterns. The EP amplitudes did not change significantly when the presynaptic spike was preceded by either a short or long interspike interval, suggesting that synaptic depression and facilitation have little effect under the conditions studied here.


Subject(s)
Auditory Pathways/physiology , Cochlear Nerve/physiology , Cochlear Nucleus/cytology , Neurons/physiology , Statistics as Topic , Acoustic Stimulation/methods , Animals , Auditory Threshold , Cats , Electric Stimulation/methods , Psychophysics , Time Factors
2.
Hear Res ; 123(1-2): 61-77, 1998 Sep.
Article in English | MEDLINE | ID: mdl-9745956

ABSTRACT

The vowel "eh" was used to study auditory-nerve responses at high sound levels (60-110 dB). By changing the playback sampling rate of the stimulus, the second formant (F2) frequency was set at best frequency (BF) for fibers with BFs between 1 and 3 kHz. For vowel stimuli, auditory-nerve fibers tend to phase-lock to the formant component nearest the fiber's BF. The responses of fibers with BFs near F2 are captured by the F2 component, meaning that fibers respond as if the stimulus consisted only of the F2 component. These narrowband responses are seen up to levels of 80-100 dB, above which a response to F1 emerges. The F1 response grows, at the expense of the F2 response, and is dominant at the highest levels. The level at which the F1 response appears is BF dependent and is higher at lower BFs. This effect appears to be suppression of the F2 response by F1. At levels near 100 dB, a component 1/component 2 transition is observed. All components of the vowel undergo the transition simultaneously, as judged by the 180 degrees phase inversion that occurs at the C2 transition. Above the C2 threshold, a broadband response to many components of the vowel is observed. These results demonstrate that the neural representation of speech in normal ears is degraded at high sound levels, such as those used in hearing aids.


Subject(s)
Auditory Threshold/physiology , Vestibulocochlear Nerve/physiology , Acoustic Stimulation , Animals , Cats , Male , Nerve Fibers/physiology , Speech Perception/physiology , Statistics as Topic
3.
J Neurophysiol ; 79(4): 1755-67, 1998 Apr.
Article in English | MEDLINE | ID: mdl-9535945

ABSTRACT

Single-unit responses were studied in the ventral cochlear nucleus (VCN) of cats as formant and trough features of the vowel /epsilon/ were shifted in the frequency domain to each unit's best frequency (BF; the frequency of greatest sensitivity). Discharge rates sampled with this spectrum manipulation procedure (SMP) were used to estimate vowel representations provided by populations of VCN neurons. In traditional population measures, a good representation of a vowel's formant structure is based on relatively high discharge rates among units with BFs near high-energy formant features and low rates for units with BFs near low-energy spectral troughs. At most vowel levels and in the presence of background noise, chopper units exhibited formant-to-trough rate differences that were larger than VCN primary-like units and auditory-nerve fibers. By contrast, vowel encoding by primary-like units resembled auditory nerve representations for most stimulus conditions. As is seen in the auditory nerve, primary-like units with low spontaneous rates (SR <18 spikes/s) produced better representations than high SR primary-like units at all but the lowest vowel levels. Awake cats exhibited the same general response properties as anesthetized cats but larger between-subject differences in vowel driven rates. The vowel encoding properties of VCN chopper units support previous interpretations that patterns of auditory nerve convergence on cochlear nucleus neurons compensate for limitations in the dynamic range of peripheral neurons.


Subject(s)
Cochlear Nucleus/physiology , Neurons/physiology , Noise , Signal Detection, Psychological , Speech/physiology , Vestibulocochlear Nerve/physiology , Acoustic Stimulation , Anesthetics , Animals , Cats , Cochlear Nucleus/cytology , Wakefulness
4.
Hear Res ; 117(1-2): 57-70, 1998 Mar.
Article in English | MEDLINE | ID: mdl-9557978

ABSTRACT

Temporal response patterns of single auditory nerve fibers were used to characterize the effects of a common hearing-aid processing scheme, frequency-shaped amplification, on the encoding of the vowel /epsilon/ in cats with a permanent noise-induced hearing loss. These responses were contrasted with responses to unmodified stimuli in control and impaired cats. Noise-induced hearing loss leads to a degraded representation of the formant frequencies, in which strong phase locking to the formants is not observed in fibers with best frequencies (BFs) near the formants and there is a wide spread of formant phase locking to fibers with higher BFs (Miller et al., 1997a,b). Frequency shaping effectively limits the upward spread of locking to F1, which improves the representation of higher frequency components of the vowel. However, it also increases phase locking to harmonics in the trough between the formants, which decreases the contrast between F1 and the trough in the neural representation. Moreover, it does not prevent the spread to higher BFs of responses to the second and third formants. The results show a beneficial effect of frequency shaping, but also show that interactions between particular gain functions and particular spectral shapes can result in unwanted distortions of the neural representation of the signal.


Subject(s)
Hearing Loss, Noise-Induced/physiopathology , Nerve Fibers/physiology , Speech Perception/physiology , Vestibulocochlear Nerve/physiology , Acoustic Stimulation , Animals , Cats , Disease Models, Animal , Hearing Aids/standards , Noise , Signal Processing, Computer-Assisted
5.
J Neurophysiol ; 73(4): 1600-16, 1995 Apr.
Article in English | MEDLINE | ID: mdl-7643170

ABSTRACT

1. We have stimulated responses of stellate cells in the anteroventral cochlear nucleus (AVCN) to single-formant stimuli (SFSs) with the use of recorded auditory-nerve fiber (ANF) responses as inputs. In particular, two important features of temporal discharge patterns, the phase locking to best frequency (BF) tones and to stimulus envelopes, were examined in the model output. Our earlier experimental studies with SFSs found an enhancement of the envelope modulation in AVCN chopper units, presumably recorded from stellate cells, as compared with that of ANFs. 2. We simulated in the model three mechanisms for the enhancement in envelope modulation proposed earlier by us, namely, convergence of ANFs, temporal summation and inhibitory input. It was found that the convergence of multiple ANFs alone did not always lead to an enhancement in modulation depth, but was necessary for the model to produce other physiologically plausible envelope features; the temporal summation of subthreshold events can lead to an increase in modulation depth; and the somatic inhibition effectively reduced the envelope minimum and, as a result, increased the modulation depth. In addition, we found that, given the same input configuration, the closer the inputs were located to the soma, the greater modulation depth they produced at the model output. 3. Different types of convergence of ANF inputs were tested in our model. It was found that the convergence of both low and high spontaneous rate (SR) ANFs resulted in an enhancement in modulation depth over a wider range of sound level than that due to the convergence of ANFs from the same SR group.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Cochlear Nucleus/physiology , Neurons/physiology , Acoustic Stimulation , Cell Membrane/physiology , Cochlear Nucleus/cytology , Evoked Potentials, Auditory/physiology , Models, Neurological , Nerve Fibers/physiology
6.
J Comput Neurosci ; 1(3): 167-94, 1994 Aug.
Article in English | MEDLINE | ID: mdl-8792230

ABSTRACT

Stellate cells in the cat antero-ventral cochlear nucleus (AVCN) maintain a robust rate-place representation of vowel spectra over a wide range of stimulus levels. This rate-place representation resembles that of low threshold, high spontaneous rate (SR) auditory nerve fibers (ANFs) at low stimulus levels, and that of high threshold, low-medium SR ANFs at high stimulus levels. One hypothesis accounting for this phenomenon is that AVCN stellate cells selectively process inputs from different SR population of ANFs in a level-dependent fashion. In this paper, we investigate a neural mechanism that can support selective processing of ANF inputs by stellate cells. We study a physiologically detailed compartmental model of stellate cells. The model reproduces PST histograms and rate-versus-level functions measured in real cells. These results indicate that simple and plausible distribution patterns of excitatory and inhibitory inputs within the stellate cell dendritic tree can support level dependent selective processing. Factors affecting selective processing are identified. This study thus represents a first step towards the development of a computational model of the AVCN stellate cell receptive field.


Subject(s)
Cochlear Nucleus/physiology , Models, Neurological , Neural Pathways/physiology , Vestibulocochlear Nerve/physiology , Animals , Cats
7.
J Neurophysiol ; 71(1): 59-78, 1994 Jan.
Article in English | MEDLINE | ID: mdl-8158242

ABSTRACT

1. We have studied responses of anteroventral cochlear nucleus (AVCN) units to single-formant stimuli (SFS), in an effort to make quantitative comparisons with responses observed in auditory-nerve fibers (ANFs) to the same stimuli (Wang and Sachs 1993) and to reveal some of the signal processing mechanisms at the AVCN. Single-unit recordings and subsequent analyses were performed on each type of commonly recorded units, namely primarylike (Pri), primarylike with notch (PN), sustained chopper (ChS), transient chopper (ChT), and onset chopper (OnC), as well as a few onset (On) units, from the AVCN in anesthetized cats. The responses were obtained at a wide range of sound levels and at a frequency range of 1-10 kHz. Modulation in the envelopes of discharge patterns was quantified by a measure called modulation depth. 2. At moderate to high sound levels, most AVCN units were found to have enhanced modulation depth compared with that of ANFs, although the degree of enhancement varies among different types. All AVCN units, except Pri type, showed an enhancement in modulation depth over that of the highest of ANFs at moderate to high sound levels in the order of (from the highest to the lowest) On, OnC, ChT/PN, and ChS. Specifically, 1) modulation depth in Pri units was comparable to that of high spontaneous rate (SR) ANFs at low sound levels and to that of low/medium SR ANFs at high sound levels (in dB SPL). When sound level was normalized by unit threshold, Pri units, on average, exhibited only limited enhancement in envelope modulation at high sound levels (> 80 dB re threshold); 2) PN units showed substantially enhanced modulation depth over that of all SR groups of ANFs at moderate to high sound levels in dB SPL or dB re threshold scales; 3) significant enhancement in modulation depth was seen in both ChS and ChT units, with a slightly higher modulation depth in ChT type across sound levels (in dB SPL or dB re threshold); 4) modulation depth of OnC units was higher than those of primary-like (Pri and PN) and chopper (ChS and ChT) units at a wide range of sound levels; 5) responses from a limited sample of On units showed the highest modulation depth among all types of AVCN units. 3. Detailed analysis revealed that the enhanced modulation depth in the responses of AVCN units is the result of increased envelope peak height and decreased envelope minimum, relative to those of ANFs.(ABSTRACT TRUNCATED AT 400 WORDS)


Subject(s)
Cochlear Nucleus/physiology , Neurons/physiology , Acoustic Stimulation , Animals , Auditory Threshold/physiology , Cats , Cochlear Nucleus/anatomy & histology , Cochlear Nucleus/cytology , Evoked Potentials, Auditory/physiology , Microelectrodes , Nerve Fibers/physiology , Vestibulocochlear Nerve/anatomy & histology , Vestibulocochlear Nerve/cytology , Vestibulocochlear Nerve/physiology
8.
J Neurophysiol ; 70(3): 1054-75, 1993 Sep.
Article in English | MEDLINE | ID: mdl-8229159

ABSTRACT

1. We have studied auditory responses to a set of speech-related narrowband sounds, single-formant stimuli (SFSs), in populations of auditory nerve fibers (ANFs). An analytic method was developed to extract the envelope of temporal discharge patterns of the ANF responses to nonsinusoidally modulated stimuli, whose spectra have multiple clusters of components. Such responses are often encountered in the auditory system when complex stimuli are used and have traditionally been studied by analyzing the fundamental component of the responses. 2. The envelope modulation in the SFSs is shown to be represented by the response patterns of ANFs. When the whole ANF population is considered, the information on modulation in stimulus envelope does not disappear at the highest sound level tested at all best frequencies (BFs) we studied (1-10 kHz). The representation is the best at medium sound levels and degrades at high sound levels. Low/medium-spontaneous rate (SR) ANFs showed greater envelope modulation in their responses at high sound levels than do high-SR ANFs. The quality of the representation at high sound levels is, on average, proportional to BF threshold of an ANF. On the basis of populations of ANFs with all SRs, the envelope modulation in the SFSs is represented over a wide range of sound levels. 3. We found that low-BF ANFs differ from high-BF ANFs in representing envelope modulation in the SFSs. For ANFs with BFs less than approximately 6 kHz, information on stimulus envelope is not only contained in spectral components near direct current but also in components at the vicinities of frequencies equal to BF and its multiples. In fact, for ANFs with BFs < 3 kHz, the contribution from spectral components centered at BF to overall response modulation is greater than that from spectral components near direct current. These findings indicate that, by using measures solely based on the fundamental component, the amount of modulation in the responses to narrowband stimuli is underestimated for low-BF ANFs. 4. Off-BF stimulation of ANFs with SFSs was found to result in increased envelope modulation in responses at high sound levels. The further away the stimulus is centered relative to unit BF, the greater the modulation it induces, provided that the stimulus is capable of exciting the unit. An SFS centered as close as 15% off unit BF can produce a significant increase in the modulation of responses at very high sound levels.(ABSTRACT TRUNCATED AT 400 WORDS)


Subject(s)
Attention/physiology , Evoked Potentials, Auditory/physiology , Phonetics , Speech Perception/physiology , Vestibulocochlear Nerve/physiology , Animals , Auditory Pathways/physiology , Cats , Fourier Analysis , Loudness Perception/physiology , Pitch Perception/physiology , Signal Processing, Computer-Assisted , Sound Spectrography
9.
J Acoust Soc Am ; 93(1): 462-9, 1993 Jan.
Article in English | MEDLINE | ID: mdl-8423262

ABSTRACT

Pure-tone frequency discrimination (delta F) performances were measured in cats and compared to neural models of these delta F performances based on auditory-nerve data in cats. Animal psychophysical techniques were used to train cats to discriminate frequency changes for pulsed pure tones in background noise at both 1.0 and 3.0 kHz. A go-left, go-right procedure was employed, and delta F's were measured in noise as a function of signal level at a constant signal-to-noise ratio. In contrast to human listeners, cats showed increases in delta F at 1.0 kHz with increasing signal level. Model estimates of delta F's based on rate responses in the cat auditory nerve predict increasing delta F with increasing signal level, the trend observed in the cat psychophysical data. Model estimates of delta F's based on temporal (phase-locking) properties in cat auditory nerve, on the other hand, predict decreases in delta F that have been observed in previous data from human listeners [Dye and Hafter, J. Acoust. Soc. Am. 67, 1746-1753 (1980)]. These results suggest that for cats, average rate, rather than phase-locking, may be used by the central nervous system in performing frequency discrimination in background noise at 1.0 kHz. At 3.0 kHz cats showed little change in delta F as a function of signal level, a result similar to the trend for human listeners to show no change or slight increases in delta F with increases in signal level for tones in the 2- to 3-kHz range.


Subject(s)
Auditory Perception/physiology , Noise , Vestibulocochlear Nerve/physiology , Animals , Cats , Loudness Perception/physiology , Psychometrics , Psychophysics
10.
J Neurophysiol ; 68(5): 1589-602, 1992 Nov.
Article in English | MEDLINE | ID: mdl-1479432

ABSTRACT

1. Response thresholds and dynamic range properties of neurons in the ventral cochlear nucleus (VCN) of awake cats were measured by fitting a computational model to rate-level functions for best frequency (BF) tone bursts and for bursts of broad-band noise. Dynamic range measurements were performed in quiet and in the presence of continuous background noise. 2. The sample of neurons obtained in the VCN of awake cats exhibited a variety of peristimulus histograms (PSTHs) and thresholds. All PSTH response types previously described in the VCN of anesthetized cats were found in awake cats. The lowest thresholds for neural responses were observed at sound pressure levels that were equivalent to behavioral thresholds of absolute auditory sensitivity. 3. When responses to BF tones or bursts of broad-band noise were recorded in quiet backgrounds, the dynamic range properties of most units in the VCN of awake cats were not significantly different from dynamic range properties of auditory nerve fibers (ANFs) in anesthetized cats or VCN units in decerebrate cats. All auditory units showed a larger dynamic range for noise bursts than for tone bursts, but VCN units with primary-like and onset PSTHs showed larger dynamic ranges for responses to noise bursts than that of ANFs and VCN chopper units. 4. When tests were performed in the presence of continuous noise, rate-level functions for BF tone bursts shifted to higher tone levels and showed a more compressed range of driven rates in comparison with data obtained in quiet. Compression of the rate-level function in noise resulted from an increase in driven rate at low tone levels and a decrease in rate at high tone levels. These changes in the rate-level function suggest that noise may reduce the range of BF tone levels that are potentially encoded by a unit's rate responses. By exhibiting larger shifts and less compression in background noise, VCN units in awake cats better preserved the dynamic range of their rate responses to BF tones than ANFs in anesthetized cats or VCN units in decerebrate cats. 5. Rate-level functions were obtained from a small sample of VCN units not only with the cat performing the behavioral task but also with the cat awake and sitting quietly in the testing apparatus. No differences in noise-induced shift or compression were noted between the two testing conditions.(ABSTRACT TRUNCATED AT 400 WORDS)


Subject(s)
Cochlea/physiology , Neurons/physiology , Acoustic Stimulation , Animals , Auditory Threshold/physiology , Behavior, Animal/physiology , Cats , Cochlea/anatomy & histology , Decerebrate State/physiopathology , Electrophysiology , Models, Neurological
11.
J Neurophysiol ; 68(1): 124-43, 1992 Jul.
Article in English | MEDLINE | ID: mdl-1517819

ABSTRACT

1. We have recorded the responses of neurons in the anteroventral cochlear nucleus (AVCN) of barbiturate-anesthetized cats to pure tones [either at the unit's best frequency (BF) or at another frequency (OFF-BF)] and to two-tone combination stimuli. 2. The effects of OFF-BF input (either alone or presented simultaneously with a BF tone in a two-tone stimulus) on the response patterns of choppers may include not only rate inhibition but changes in the discharge regularity and the temporal adaptation properties of the spike trains. 3. In the majority of cases we studied (119 of 146 frequencies examined in 45 units), the discharge regularity of a response to an OFF-BF or two-tone stimulus is comparable with that of a "rate-matched" BF tone response. In a minority of cases (27 of 146 frequencies examined), however, OFF-BF input (either alone or in a two-tone stimulus format) changed the regularity compared with that of a rate-matched BF tone response. 4. In the majority of cases studied (139 of 171 frequencies examined in 53 units), the initial pattern of rate adaptation ["temporal adaptation pattern" (TAP)] was the same in response to a short tone burst at BF, to an OFF-BF tone burst, or to a pair of tones. The TAP can, however, be significantly altered by OFF-BF input, although this is a comparatively infrequent occurrence in our data sample (32 of 171 frequencies examined), from the response to BF tone to the response to the two-tone or OFF-BF stimulus, are as follows: sustained to slowly adapting; slowly adapting to transiently adapting, and transiently adapting to slowly adapting. Changes in the TAPs of chopper unit responses have been recorded from both regular and irregular choppers and cannot be accounted for on the basis of changes in sustained firing rate. These changes in the discharge regularity and TAP in the small minority of cases suggest that (at least in these cases) the inhibitory effect of OFF-BF input is not simply the result of two-tone suppression at the level of the auditory nerve fiber input. 5. We have observed that regular choppers may be transformed into irregular choppers by OFF-BF (rate inhibitory) input.(ABSTRACT TRUNCATED AT 400 WORDS)


Subject(s)
Acoustic Stimulation , Cochlea/physiology , Neurons/physiology , Adaptation, Physiological , Anesthesia , Animals , Cats , Electrophysiology , Microelectrodes
12.
Philos Trans R Soc Lond B Biol Sci ; 336(1278): 399-402, 1992 Jun 29.
Article in English | MEDLINE | ID: mdl-1354380

ABSTRACT

We have investigated responses of the auditory nerve fibres (ANFS) and anteroventral cochlear nucleus (AVCN) units to narrowband 'single-formant' stimuli (SFSS). We found that low and medium spontaneous rate (SR) ANFS maintain greater amplitude modulation (AM) in their responses at high sound levels than do high SR units when sound level is considered in dB SPL. However, this partitioning of high and low SR units disappears if sound level is considered in dB relative to unit threshold. Stimuli with carrier frequencies away from unit best frequency (BF) were found to generate higher AM in responses at high sound levels than that observed even in most low and medium SR units for stimuli with carrier frequencies near BF. AVCN units were shown to have increased modulation depth in their responses when compared with high SR ANFS with similar BFS and to have increased or comparable modulation depth when compared with low SR ANFS. At sound levels where AM almost completely disappears in high SR ANFS, most AVCN units we studied still show significant AM in their responses. Using a dendritic model, we investigated possible mechanisms of enhanced AM in AVCN units, including the convergence of inputs from different SR groups of ANFS and a postsynaptic threshold mechanism in the soma.


Subject(s)
Cochlear Nerve/physiology , Vestibulocochlear Nerve/physiology , Acoustic Stimulation , Animals , Auditory Perception/physiology , Cats , Evoked Potentials, Auditory/physiology
13.
J Neurosci Methods ; 40(2-3): 155-69, 1991 Dec.
Article in English | MEDLINE | ID: mdl-1800853

ABSTRACT

A method is described for single-unit recording in the ventral cochlear nucleus (VCN) of behaving cats. Five cats were implanted with titanium head-restraint devices and acetal plastic recording chambers. The recording chamber directed microelectrodes through the cerebellum and into the VCN. Electrophysiological recordings were obtained from isolated VCN units while the cats engaged in an auditory discrimination task. The task required the cats to discriminate changes in the temporal pattern of a series of tone or noise bursts. Cats initiated the testing sequence by depressing a lever, and obtained food by releasing the lever when the pattern of stimuli changed from one 200-ms burst/s to four 50-ms bursts/s. Stimulus features (i.e., frequency, level, duration) were manipulated to characterize the physiological responses of VCN units. Preliminary data suggest that peri-stimulus time histograms (PSTHs) and rate-level functions (RALVs) obtained from behaving cats are similar to those previously described in anesthetized and decerebrate cats when units are tested with tones in quiet backgrounds. However, in comparison to anesthetized and decerebrate cats, units obtained in behaving cats demonstrate a more sensitive rate representation of stimulus level when tested in continuous background noise.


Subject(s)
Brain Stem/physiology , Cochlear Nerve/physiology , Conditioning, Operant/physiology , Neurons/physiology , Acoustic Stimulation , Anesthesia, General , Animals , Brain Stem/anatomy & histology , Brain Stem/cytology , Cats , Decerebrate State , Electrophysiology/instrumentation , Electrophysiology/methods , Evoked Potentials , Male , Reinforcement, Psychology , Restraint, Physical , Wakefulness
14.
J Neurophysiol ; 65(3): 606-29, 1991 Mar.
Article in English | MEDLINE | ID: mdl-1646868

ABSTRACT

1. We investigate the discharge patterns of chopper units in the anteroventral cochlear nucleus (AVCN) by developing an equivalent cylinder compartmental model of AVCN stellate cells, which are the sources of the chopper response pattern. The model consists of a passive dendritic tree connected to somatic and axonal compartments with voltage-sensitive channels. Synaptic inputs to the model are simulated auditory nerve fiber responses to best-frequency tones. 2. We adjust the anatomic and electrical parameters of the model to agree with available intracellular data from stellate cells in the AVCN of the mouse and the cat and compare the response of the model to injected current with responses recorded in vitro. The model shows approximately linear current-voltage characteristics for small hyperpolarizing currents. The model's input resistance and the time course of its response to hyperpolarizing current applied at the soma are comparable with those measured from stellate cells in vitro. In response to sustained depolarizing current, the model fires repetitively with nearly perfect regularity, a property also observed in vitro. 3. Auditory nerve inputs to the cell are modeled as deadtime-modified Poisson processes with a multiexponential adaptation in the Poisson rate. We are able to adjust the number, rate, and location of excitatory and inhibitory inputs to the model and succeed in simulating chopper response patterns seen in vivo. 4. Chopper units exhibit a variety of regularity and adaptation patterns in response to tone stimuli. Physiological data from brain slice experiments and experiments in vivo imply that this heterogeneity is primarily due to differences in input configurations. By systematically varying the number and position of excitatory and inhibitory inputs, we can simulate a range of chopper response patterns. 5. We quantify the regularity of the model's response using the coefficient of variation (CV) of the interspike interval. We find that the CV decreases, i.e., the regularity increases, as the number of converging inputs or their distance from the soma increases. The regularity of the output is more sensitive to the number of converging inputs than to their location on the dendritic tree. The statistics of the first spike latency (FSL) are also sensitive to the configuration of excitatory inputs. The mean and minimum FSL are more sensitive to the electrotonic distance of the inputs from the soma than to the number of inputs, whereas the standard deviation of the FSL is highly dependent on the number of converging inputs and is nearly independent of their location.(ABSTRACT TRUNCATED AT 400 WORDS)


Subject(s)
Cochlea/physiology , Axons/physiology , Cell Membrane/physiology , Cochlea/anatomy & histology , Computer Simulation , Dendrites/physiology , Electrophysiology , Evoked Potentials/physiology , Humans , Models, Neurological , Potassium Channels/physiology , Sodium Channels/physiology , Stellate Ganglion/cytology , Synapses/physiology , Vestibulocochlear Nerve/physiology
15.
J Neurophysiol ; 63(5): 1191-212, 1990 May.
Article in English | MEDLINE | ID: mdl-2358869

ABSTRACT

1. We have recorded the responses of neurons in the anteroventral cochlear nucleus (AVCN) of barbiturate-anesthetized cats to the synthetic, steady-state-vowel sound /e/, presented over a range of stimulus intensities. 2. The responses of (putative) spherical bushy cells [primary-like (Pri) units] to the vowel resemble those of auditory-nerve fibers (ANFs) in terms of both rate and temporal encoding at low and moderate stimulus levels. It was not possible to study the responses of most Pri units at the highest stimulus level because of the large neurophonic component present in recordings from most primarylike units at higher stimulus levels. 3. The responses of many (putative) globular bushy cells [primarylike with notch (PN) units] to the vowel resemble those of ANFs; however, there appears to be greater heterogeneity in the responses of units in the PN population than in the Pri population in terms of both temporal and rate encoding. 4. Populations of stellate cells (chopper units) have degraded representations of the temporal information in ANF population discharge patterns in response to the vowel; this is consistent with the responses of these units to pure tones. Both regular (ChS) and irregular (ChT) chopper subpopulations, however, maintain better rate-place representations of the vowel spectrum than does the population of ANFs as a whole. The rate-place representations of the vowel spectrum by both chopper populations closely resemble those of low and medium spontaneous rate ANFs at most stimulus levels. 5. The data presented in this paper suggest that a functional partition of the AVCN chopper population could yield two distinct rate representations in response to a complex stimulus: one that is graded with stimulus level (over a 30 to 40 dB range) and that, even at rate saturation, maintains a "low contrast" stimulus representation; and a second that maintains a robust, "high contrast" stimulus representation at all levels but that confers less information about stimulus level.


Subject(s)
Auditory Pathways/physiology , Cochlear Nerve/physiology , Rhombencephalon/physiology , Acoustic Stimulation , Action Potentials , Animals , Cats
16.
J Neurophysiol ; 62(6): 1303-29, 1989 Dec.
Article in English | MEDLINE | ID: mdl-2600627

ABSTRACT

1. The responses of neurons in the anteroventral cochlear nucleus (AVCN) of barbiturate-anesthetized cats are characterized with regard to features of their responses to short tone bursts (STBs; 25 ms). A "decision tree" is presented to partition AVCN units on the basis of post-stimulus time histogram (PSTH) shape, first spike latency, and discharge rate and regularity calculated as functions of time during responses to STBs. The major classes of AVCN units (primary-like, primary-like-with-notch, chopper, and onset) have been described previously; in this paper, special attention is given to clarifying and systematizing boundaries between classes. Certain types of "unusual" units that may be confused with units in one of the major classes are also examined. 2. When STBs are presented synchronously (constant phase at onset), PSTHs of responses to very-low-frequency (less than 1.0 kHz) tones are difficult if not impossible to resolve into the classes listed above because all unit types phase-lock to low-frequency tones. However, when STBs are presented asynchronously, the responses of units with low best frequencies can be categorized on the basis of PSTH shape and first spike latency. 3. Primary-like, primary-like-with-notch, and onset units are distinguished primarily on the basis of PSTH shape. These three unit types have comparable minimum first spke latencies and synchronization to tones. One type of "unusual" response poses a particular hazard with respect to the generation of uncontaminated primary-like populations. Such "unusual" units have PSTHs that appear primary-like; these units are, however, distinguished by their unusually long first spike latencies. Unlike primary-like units, these "unusual" units show extremely poor synchronization to tones. 4. Chopper units are defined as having an initial response that is highly regular, resulting in the characteristic multimodal PSTH. "Unusual" units with multimodal PSTHs but whose initial responses are not highly regular (measured by the reproducibility of the initial firing pattern in response to multiple repetitions of a STB) are eliminated from the chopper populations. 5. In barbiturate-anesthetized cats, at least three patterns of chopper response can be distinguished on the basis of temporal patterns of rate and regularity adaptation. "Sustained" choppers show no adaptation of instantaneous rate (measured by the inverse of the mean interspike interval), and their discharge remains highly regular throughout the response. "Transiently adapting" choppers undergo a very rapid (less than 10 ms) decrease in instantaneous rate accompanied by a sharp increase in discharge irregularity.(ABSTRACT TRUNCATED AT 400 WORDS)


Subject(s)
Auditory Pathways/physiology , Cochlear Nerve/physiology , Rhombencephalon/physiology , Acoustic Stimulation , Action Potentials , Animals , Cats , Reaction Time/physiology
17.
Hear Res ; 41(2-3): 115-23, 1989 Sep.
Article in English | MEDLINE | ID: mdl-2808144

ABSTRACT

Rate versus level functions are presented for auditory-nerve fiber responses to best frequency (BF) tones presented alone and in the presence of a constant level suppressor tone. The paper focuses on units with sloping saturation rate functions for BF tones presented alone. Two-tone rate functions are generally parallel to BF functions at firing rates below those in the sloping saturation region of the BF function. At rates in the sloping saturation range the two-tone function grows with a greater slope than that of the BF function until the two functions meet. This result is discussed in terms of current knowledge of two-tone suppression on the basilar membrane.


Subject(s)
Basilar Membrane/physiology , Cochlea/physiology , Evoked Potentials, Auditory , Vestibulocochlear Nerve/physiology , Acoustic Stimulation , Animals , Cats , Time Factors
18.
Hear Res ; 41(1): 61-9, 1989 Aug.
Article in English | MEDLINE | ID: mdl-2793615

ABSTRACT

A computationally tractable form of the rate-level model proposed by Sachs and Abbas (1974) is presented. The first stage of the model is a compressive nonlinearity whose input-output function is chosen to reflect current data on basilar-membrane displacement. The output of this nonlinearity is converted to driven discharge rate by the saturating nonlinearity originally used by Sachs and Abbas (1974). In fitting the model to data four model parameters are chosen to minimize the mean squared error between rate functions generated by the model and the data. With parameters chosen in this way, the model provides good fits to the range of rate-level shapes from flat saturations to sloping saturations. One important parameter in the model is the 'threshold for compression'. For low- and medium-spontaneous rate fibers with similar best frequencies (BFs), the minimum mean squared error compression threshold is roughly constant at about 30 dB above the thresholds of the most sensitive (high-spontaneous rate) fibers at that BF.


Subject(s)
Models, Neurological , Vestibulocochlear Nerve/physiology , Animals , Cats
19.
Hear Res ; 35(2-3): 165-89, 1988 Sep 15.
Article in English | MEDLINE | ID: mdl-3198509

ABSTRACT

We use simple statistical models of the firing patterns of high, medium, and low spontaneous rate auditory-nerve fibers to study mechanisms which determine the overall dynamic range of the auditory periphery. The models relate experimentally measured rate response properties of fibers with best frequency (BF) near 8.0 kHz to their ability to encode changes in BF tone level by changes in discharge rate in backgrounds of quiet and noise, with and without electrical stimulation of the crossed olivocochlear bundle (COCB). Application of the models to the BF tone rate responses of auditory-nerve fibers in backgrounds of quiet shows that optimum processing of the rate responses of fibers with BF near 8.0 kHz yields performance in the intensity discrimination task meeting or exceeding that of human subjects over an 80 dB range of levels. By defining a statistical measure of dynamic range, we confirm the results of Costalupes et al. (1984) demonstrating that masking noise shifts the dynamic range of auditory-nerve fibers to higher stimulus levels, thus preventing rate saturation. However, model analysis shows that masking noise also produces large reductions of dynamic range as well as large increases in the minimum intensity difference that can be encoded by the rate responses of single and ensembles of fibers. Electrical stimulation of the COCB can restore auditory-nerve fiber dynamic range and sensitivity to changes in BF tone level in noise backgrounds, in some cases to roughly that observed in backgrounds of quiet.


Subject(s)
Loudness Perception/physiology , Nerve Fibers/physiology , Vestibulocochlear Nerve/physiology , Animals , Brain Stem/physiology , Cats , Differential Threshold/physiology , Electric Stimulation , Hair Cells, Auditory/physiology , Models, Neurological , Models, Statistical , Noise , Perceptual Masking
20.
J Neurophysiol ; 57(4): 1002-21, 1987 Apr.
Article in English | MEDLINE | ID: mdl-3585452

ABSTRACT

The discharge rates of single auditory-nerve fibers responding to best-frequency (BF) tones of varying level presented simultaneously with fixed level broadband noise were recorded with and without electrical stimulation of the crossed olivocochlear bundle (COCB). In the absence of COCB stimulation, monotonic increases in noise level produce monotonic increases in the low-level noise-driven response rate of auditory nerve fibers. As a result of adaptation, these increases in noise-driven response rate produce monotonic decreases in saturation discharge rate. At high noise levels, these compressive effects may eliminate the differential rate response of auditory nerve fibers to BF tones. COCB stimulation can restore this differential rate response by producing large decreases in noise-driven response rate and large increases in saturation discharge rate. In backgrounds of quiet, COCB stimulation is known to shift the dynamic range of single auditory nerve fiber BF tone responses to higher stimulus levels. In the presence of background noise, COCB stimulation produces upward shift of dynamic range, which decreases with increasing noise level. At high noise levels, COCB-induced decompression of rate-level functions may occur with little or no dynamic range shift. This enables auditory nerve fibers to signal changes in tone level with changes in discharge rate at lower signal-to-noise ratios than would be possible otherwise. Broadband noise also produces upward shift of the dynamic range of single auditory nerve fiber BF tone response. Noise-induced dynamic range shift of BF tone response was measured as a function of noise level with and without COCB stimulation. COCB stimulation elevates the threshold of noise-induced dynamic range shift. This shift is thought to result from two-tone rate suppression. Increases in the threshold of noise-induced shift due to COCB stimulation therefore suggests an interaction between the mechanism of two-tone rate suppression and the mechanism by which COCB stimulation produces dynamic range shift. These interactions were further investigated by recording auditory nerve fiber rate responses to fixed-level BF excitor tones presented simultaneously with fixed-frequency variable level suppressor tones. Rate responses were recorded with and without COCB stimulation. Experimental results were quantified using a phenomenological model of two-tone rate suppression presented by Sachs and Abbas.


Subject(s)
Cochlea/innervation , Olivary Nucleus/physiology , Vestibulocochlear Nerve/physiology , Acoustic Stimulation , Animals , Cats , Electric Stimulation , Evoked Potentials , Mathematics , Pressure
SELECTION OF CITATIONS
SEARCH DETAIL
...