Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem Lett ; 26(12): 2952-2956, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27133481

ABSTRACT

A series of N-heterocyclic pyridinone catechol-O-methyltransferase (COMT) inhibitors were synthesized. Physicochemical properties, including ligand lipophilic efficiency (LLE) and clogP, were used to guide compound design and attempt to improve inhibitor pharmacokinetics. Incorporation of heterocyclic central rings provided improvements in physicochemical parameters but did not significantly reduce in vitro or in vivo clearance. Nevertheless, compound 11 was identified as a potent inhibitor with sufficient in vivo exposure to significantly affect the dopamine metabolites homovanillic acid (HVA) and dihydroxyphenylacetic acid (DOPAC), and indicate central COMT inhibition.


Subject(s)
Catechol O-Methyltransferase Inhibitors/pharmacology , Catechol O-Methyltransferase/metabolism , Heterocyclic Compounds/pharmacology , Pyridones/pharmacology , Animals , Catechol O-Methyltransferase Inhibitors/chemical synthesis , Catechol O-Methyltransferase Inhibitors/chemistry , Dose-Response Relationship, Drug , Heterocyclic Compounds/chemical synthesis , Heterocyclic Compounds/chemistry , Humans , Models, Molecular , Molecular Structure , Pyridones/chemical synthesis , Pyridones/chemistry , Rats , Structure-Activity Relationship
2.
Antimicrob Agents Chemother ; 60(4): 2241-7, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26833152

ABSTRACT

Doravirine (DOR), which is currently in a phase 3 clinical trial, is a novel human immunodeficiency type 1 virus (HIV-1) nonnucleoside reverse transcriptase inhibitor (NNRTI). DOR exhibits potent antiviral activity against wild-type virus and K103N, Y181C, and K103N/Y181C mutant viruses, with 50% inhibitory concentrations (IC50s) of 12, 21, 31, and 33 nM, respectively, when measured in 100% normal human serum (NHS). To assess the potential for DOR to suppress NNRTI-associated and rilpivirine (RPV)-specific mutants at concentrations achieved in the clinic setting, inhibitory quotients (IQs) were calculated by determining the ratio of the clinical trough concentration over the antiviral IC50for each virus with DOR and RPV and efavirenz (EFV). DOR displayed IQs of 39, 27, and 25 against the K103N, Y181C, and K103N/Y181C mutants, respectively. In contrast, RPV exhibited IQs of 4.6, 1.4, and 0.8, and EFV showed IQs of 2.5, 60, and 1.9 against these viruses, respectively. DOR also displayed higher IQs than those of RPV and EFV against other prevalent NNRTI-associated mutants, with the exception of Y188L. Both DOR and EFV exhibited higher IQs than RPV when analyzed with RPV-associated mutants. Resistance selections were conducted with K103N, Y181C, G190A, and K103N/Y181C mutants at clinically relevant concentrations of DOR, RPV, and EFV. No viral breakthrough was observed with DOR, whereas breakthrough viruses were readily detected with RPV and EFV against Y181C and K103N viruses, respectively. These data suggest that DOR should impose a higher barrier to the development of resistance than RPV and EFV at the concentrations achieved in the clinic setting.


Subject(s)
Anti-HIV Agents/pharmacology , Drug Resistance, Viral/drug effects , HIV Reverse Transcriptase/genetics , HIV-1/drug effects , Pyridones/pharmacology , Triazoles/pharmacology , Alkynes , Benzoxazines/pharmacology , Cyclopropanes , Dose-Response Relationship, Drug , Drug Dosage Calculations , Drug Resistance, Viral/genetics , Gene Expression , HEK293 Cells , HIV Reverse Transcriptase/antagonists & inhibitors , HIV Reverse Transcriptase/metabolism , HIV-1/genetics , HIV-1/growth & development , Humans , Inhibitory Concentration 50 , Mutation , Rilpivirine/pharmacology
3.
ACS Med Chem Lett ; 6(3): 318-23, 2015 Mar 12.
Article in English | MEDLINE | ID: mdl-25815153

ABSTRACT

3-Hydroxy-4-pyridinones and 5-hydroxy-4-pyrimidinones were identified as inhibitors of catechol-O-methyltransferase (COMT) in a high-throughput screen. These heterocyclic catechol mimics exhibit potent inhibition of the enzyme and an improved toxicity profile versus the marketed nitrocatechol inhibitors tolcapone and entacapone. Optimization of the series was aided by X-ray cocrystal structures of the novel inhibitors in complex with COMT and cofactors SAM and Mg(2+). The crystal structures suggest a mechanism of inhibition for these heterocyclic inhibitors distinct from previously disclosed COMT inhibitors.

4.
Antimicrob Agents Chemother ; 58(3): 1652-63, 2014.
Article in English | MEDLINE | ID: mdl-24379202

ABSTRACT

Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are a mainstay of therapy for treating human immunodeficiency type 1 virus (HIV-1)-infected patients. MK-1439 is a novel NNRTI with a 50% inhibitory concentration (IC50) of 12, 9.7, and 9.7 nM against the wild type (WT) and K103N and Y181C reverse transcriptase (RT) mutants, respectively, in a biochemical assay. Selectivity and cytotoxicity studies confirmed that MK-1439 is a highly specific NNRTI with minimum off-target activities. In the presence of 50% normal human serum (NHS), MK-1439 showed excellent potency in suppressing the replication of WT virus, with a 95% effective concentration (EC95) of 20 nM, as well as K103N, Y181C, and K103N/Y181C mutant viruses with EC95 of 43, 27, and 55 nM, respectively. MK-1439 exhibited similar antiviral activities against 10 different HIV-1 subtype viruses (a total of 93 viruses). In addition, the susceptibility of a broader array of clinical NNRTI-associated mutant viruses (a total of 96 viruses) to MK-1439 and other benchmark NNRTIs was investigated. The results showed that the mutant profile of MK-1439 was superior overall to that of efavirenz (EFV) and comparable to that of etravirine (ETR) and rilpivirine (RPV). Furthermore, E138K, Y181C, and K101E mutant viruses that are associated with ETR and RPV were susceptible to MK-1439 with a fold change (FC) of <3. A two-drug in vitro combination study indicated that MK-1439 acts nonantagonistically in the antiviral activity with each of 18 FDA-licensed drugs for HIV infection. Taken together, these in vitro data suggest that MK-1439 possesses the desired properties for further development as a new antiviral agent.


Subject(s)
Anti-HIV Agents/pharmacology , HIV Reverse Transcriptase/antagonists & inhibitors , HIV-1/drug effects , Pyridones/pharmacology , Triazoles/pharmacology , Anti-HIV Agents/administration & dosage , Anti-HIV Agents/adverse effects , Drug Synergism , HIV Infections/drug therapy , HIV Reverse Transcriptase/metabolism , HIV-1/enzymology , Humans , In Vitro Techniques , Macrophages/drug effects , Monocytes/drug effects , Pyridones/adverse effects , Triazoles/adverse effects , Virus Replication/drug effects
5.
ACS Chem Neurosci ; 3(2): 129-40, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22860182

ABSTRACT

Reduced dopamine neurotransmission in the prefrontal cortex has been implicated as causal for the negative symptoms and cognitive deficit associated with schizophrenia; thus, a compound which selectively enhances dopamine neurotransmission in the prefrontal cortex may have therapeutic potential. Inhibition of catechol-O-methyltransferase (COMT, EC 2.1.1.6) offers a unique advantage, since this enzyme is the primary mechanism for the elimination of dopamine in cortical areas. Since membrane bound COMT (MB-COMT) is the predominant isoform in human brain, a high throughput screen (HTS) to identify novel MB-COMT specific inhibitors was completed. Subsequent optimization led to the identification of novel, non-nitrocatechol COMT inhibitors, some of which interact specifically with MB-COMT. Compounds were characterized for in vitro efficacy versus human and rat MB and soluble (S)-COMT. Select compounds were administered to male Wistar rats, and ex vivo COMT activity, compound levels in plasma and cerebrospinal fluid (CSF), and CSF dopamine metabolite levels were determined as measures of preclinical efficacy. Finally, novel non-nitrocatechol COMT inhibitors displayed less potent uncoupling of the mitochondrial membrane potential (MMP) compared to tolcapone as well as nonhepatotoxic entacapone, thus mitigating the risk of hepatotoxicity.


Subject(s)
Antipsychotic Agents/pharmacokinetics , Catechol O-Methyltransferase Inhibitors , Catechol O-Methyltransferase/metabolism , Enzyme Inhibitors/pharmacology , Animals , Antipsychotic Agents/chemical synthesis , Benzophenones/chemistry , Benzophenones/pharmacology , Biomarkers , Blotting, Western , Catechol O-Methyltransferase/isolation & purification , Cell Membrane/enzymology , Cell Membrane/metabolism , Dopamine/metabolism , Enzyme Inhibitors/chemistry , Humans , Isoenzymes/antagonists & inhibitors , Isoenzymes/isolation & purification , Isoenzymes/metabolism , Male , Matrix Metalloproteinases/metabolism , Membrane Potential, Mitochondrial/drug effects , Nitrophenols/chemistry , Nitrophenols/pharmacology , Rats , Rats, Sprague-Dawley , Rats, Wistar , Recombinant Proteins/chemistry , Schizophrenia/drug therapy , Substrate Specificity , Tolcapone
6.
Ann Neurol ; 71(2): 245-57, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22367996

ABSTRACT

OBJECTIVE: Huntington disease-like 2 (HDL2) is a progressive, late onset autosomal dominant neurodegenerative disorder, with remarkable similarities to Huntington disease (HD). HDL2 is caused by a CTG/CAG repeat expansion. In the CTG orientation, the repeat is located within the alternatively spliced exon 2A of junctophilin-3 (JPH3), potentially encoding polyleucine and polyalanine, whereas on the strand antisense to JPH3, the repeat is in frame to encode polyglutamine. The JPH3 protein product serves to stabilize junctional membrane complexes and regulate neuronal calcium flux. We have previously demonstrated the potential pathogenic properties of JPH3 transcripts containing expanded CUG repeats. The aim of this study was to test the possibility that loss of JPH3 expression or expanded amino acid tracts also contribute to HDL2 pathogenesis. METHODS: Transcripts from the HDL2 locus, and their protein products, were examined in HDL2, HD, and control frontal cortex. The effect of loss of Jph3 was examined in mice with partial or complete loss of Jph3. RESULTS: Bidirectional transcription occurs at the HDL2 locus, although expression of antisense transcripts with expanded CAG repeats is limited. Protein products with expanded amino acid tracts were not detected in HDL2 brain. However, JPH3 transcripts and full-length JPH3 protein are decreased in HDL2 brain, and Jph3 hemizygous and null mice exhibit abnormal motor function. INTERPRETATION: Our results suggest that the pathogenic mechanism of HDL2 is multifactorial, involving both a toxic gain of function of JPH3 RNA and a toxic loss of JPH3 expression.


Subject(s)
Huntington Disease/etiology , Huntington Disease/genetics , Membrane Proteins/biosynthesis , Membrane Proteins/deficiency , Trinucleotide Repeat Expansion/genetics , Age of Onset , Animals , Disease Models, Animal , Female , Huntington Disease/metabolism , Male , Membrane Proteins/genetics , Mice , Mice, Knockout , Neuropsychological Tests , Oligonucleotides, Antisense/genetics , Prefrontal Cortex/metabolism , Prefrontal Cortex/physiopathology
7.
Psychiatr Genet ; 19(2): 64-71, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19672138

ABSTRACT

OBJECTIVES: Genomic copy number variations (CNVs) are a major form of variation in the human genome and play an etiologic role in several neuropsychiatric diseases. Tandem repeats, particularly with long (>50 bp) repeat units, are a relatively common yet underexplored type of CNV that may significantly contribute to human genomic variation and disease risk. We therefore carried out a pilot experiment to explore the potential role of long tandem repeats as risk factors in psychiatric disorders. METHODS: A bacterial artificial chromosome-based array comparative genomic hybridization (aCGH) platform was used to examine CNVs in genomic DNA from 34 probands with schizophrenia or schizoaffective disorder. RESULTS: The aCGH screen detected an apparent deletion on 5p15.1 in two probands, caused by the presence in each proband of two low copy number (short) alleles of a tandem repeat that ranges in length from fewer than 10 to greater than 50 3.4 kb units in the population examined. Short alleles partially segregate with schizophrenia in a small number of families, though linkage was not significant. An association study showed no significant difference in repeat length between 406 schizophrenia cases and 392 controls. CONCLUSION: Although we did not demonstrate a relationship between the 5p15.1 repeat and schizophrenia, our results illustrate that long tandem repeats represent an intriguing type of genetic variation that have not been studied in earlier connection with psychiatric illness. aCGH can detect a small subset of these repeats, but systematic investigation will require the development of specific arrays and improved analytical methods.


Subject(s)
Chromosomes, Human, Pair 5/genetics , Gene Dosage/genetics , Genome, Human/genetics , Polymorphism, Genetic , Schizophrenia/genetics , Tandem Repeat Sequences/genetics , Alleles , Case-Control Studies , Chromosome Segregation , Chromosomes, Artificial, Bacterial/genetics , Humans , Inheritance Patterns , Polymerase Chain Reaction
8.
J Pharmacol Exp Ther ; 328(3): 921-30, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19088300

ABSTRACT

Multiple studies indicate that N-methyl-D-aspartate (NMDA) receptor hypofunction underlies some of the deficits associated with schizophrenia. One approach for improving NMDA receptor function is to enhance occupancy of the glycine modulatory site on the NMDA receptor by increasing the availability of the endogenous coagonists D-serine. Here, we characterized a novel D-amino acid oxidase (DAAO) inhibitor, compound 8 [4H-thieno [3,2-b]pyrrole-5-carboxylic acid] and compared it with D-serine. Compound 8 is a moderately potent inhibitor of human (IC(50), 145 nM) and rat (IC(50), 114 nM) DAAO in vitro. In rats, compound 8 (200 mg/kg) decreased kidney DAAO activity by approximately 96% and brain DAAO activity by approximately 80%. This marked decrease in DAAO activity resulted in a significant (p < 0.001) elevation in both plasma (220% of control) and cerebrospinal fluid (CSF; 175% of control) D-serine concentration. However, compound 8 failed to significantly influence amphetamine-induced psychomotor activity, nucleus accumbens dopamine release, or an MK-801 (dizocilpine maleate)-induced deficit in novel object recognition in rats. In contrast, high doses of D-serine attenuated both amphetamine-induced psychomotor activity and dopamine release and also improved performance in novel object recognition. Behaviorally efficacious doses of D-serine (1280 mg/kg) increased CSF levels of D-serine 40-fold above that achieved by the maximal dose of compound 8. These findings demonstrate that pharmacological inhibition of DAAO significantly increases D-serine concentration in the periphery and central nervous system. However, acute inhibition of DAAO appears not to be sufficient to increase D-serine to concentrations required to produce antipsychotic and cognitive enhancing effects similar to those observed after administration of high doses of exogenous D-serine.


Subject(s)
D-Amino-Acid Oxidase/pharmacology , Pyrroles/pharmacology , Recognition, Psychology/drug effects , Serine/pharmacology , Thiophenes/pharmacology , Aged , Animals , Dizocilpine Maleate/pharmacology , Habituation, Psychophysiologic , Humans , Male , Models, Molecular , Rats , Rats, Wistar , Schizophrenia/blood , Schizophrenia/cerebrospinal fluid , Serine/blood , Serine/cerebrospinal fluid , Thiophenes/chemistry
9.
Bioorg Med Chem Lett ; 18(11): 3386-91, 2008 Jun 01.
Article in English | MEDLINE | ID: mdl-18455394

ABSTRACT

The 'NMDA hypofunction hypothesis of schizophrenia' can be tested in a number of ways. DAO is the enzyme primarily responsible for the metabolism of d-serine, a co-agonist for the NMDA receptor. We identified novel DAO inhibitors, in particular, acid 1, which demonstrated moderate potency for DAO in vitro and ex vivo, and raised plasma d-serine levels after dosing ip to rats. In parallel, analogues were prepared to survey the SARs of 1.


Subject(s)
Carboxylic Acids/chemical synthesis , Carboxylic Acids/pharmacology , D-Amino-Acid Oxidase/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Pyrroles/chemical synthesis , Pyrroles/pharmacology , Animals , Carboxylic Acids/chemistry , Combinatorial Chemistry Techniques , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Molecular Conformation , Molecular Structure , Pyrroles/chemistry , Rats , Schizophrenia/drug therapy , Serine/analysis , Serine/blood
10.
J Neurochem ; 88(1): 51-62, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14675149

ABSTRACT

Tyrosine hydroxylase (TH) is regulated by the reversible phosphorylation of serines 8, 19, 31 and 40. Upon initiation of this study, serine 19 was unique due to its requirement of 14-3-3 binding after phosphorylation for optimal enzyme activity, although it has been more recently demonstrated that phosphorylated serine 40 also binds 14-3-3. To identify proteins that interact with TH following phosphorylation of serine 19, this amino acid was mutated to alanine and THS19A was used as bait in a yeast two-hybrid system. From this, mouse-derived cyclin-dependent kinase 11 (CDK11)p110 was identified as an interacting partner with THS19A. The interaction was confirmed using human CDK11p110 cDNA in a mammalian system. Previous research has demonstrated that casein kinase 2 (CK2) interacts with CDK11p110, and both were observed to phosphorylate TH in vitro. In addition, CDK11p110 overexpression was observed to inhibit the interaction between TH and 14-3-3. A mechanism contributing to disruption of the interaction between TH and 14-3-3 may be due to CK2 phosphorylation of specific 14-3-3 isoforms, i.e. 14-3-3 tau. Collectively, these results imply that CDK11p110 and CK2 negatively regulate TH catecholamine biosynthetic activity since phosphoserine 19 of TH requires 14-3-3 binding for optimal enzyme activity and a decreased rate of dephosphorylation.


Subject(s)
Cyclin-Dependent Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Tyrosine 3-Monooxygenase/metabolism , 14-3-3 Proteins , Amino Acid Substitution , Animals , CDC2-CDC28 Kinases/metabolism , Casein Kinase II , Cell Line , Cyclin-Dependent Kinase 2 , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/pharmacology , Humans , Mice , Phosphorylation , Protein Binding/drug effects , Protein Binding/genetics , Protein Binding/physiology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/pharmacology , Rats , Spodoptera , Two-Hybrid System Techniques , Tyrosine 3-Monooxygenase/genetics
11.
Biochim Biophys Acta ; 1624(1-3): 98-108, 2003 Dec 05.
Article in English | MEDLINE | ID: mdl-14642819

ABSTRACT

Cyclin-dependent kinase (CDK)11(p110), formerly known as PITSLRE, is a serine/threonine kinase whose catalytic activity has been associated with transcription and RNA processing. To further evaluate the regulation of CDK11(p110) catalytic activity, interacting proteins were identified by liquid chromatography and tandem mass spectrometry (LC-MS/MS). Following the immunoprecipitation of CDK11(p110) from COS-7 cells, the serine/threonine kinase CK2 was identified by LC-MS/MS. These results were extended through the observation that CDK11(p110) serves as a substrate for CK2 and the identification of a phosphorylation site on CDK11(p110) at Ser227 by LC-MS/MS. To obtain CDK11(p110) devoid of CK2, CDK11(p110) was expressed in High Five insect cells and secreted into the media due to the presence of a honeybee melittin signal sequence encoded at the amino-terminus of CDK11(p110). Recombinant CDK11(p110) was purified from the media and phosphorylation of histone H1 subsequently demonstrated. After demonstrating retention of CDK11(p110) kinase activity, it was evaluated for activity on the carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II (RNAP II), but only CK2 was found to phosphorylate the CTD.


Subject(s)
Cyclin-Dependent Kinases/metabolism , Protein Serine-Threonine Kinases/physiology , Cell Cycle , Cells, Cultured , Humans , Phosphorylation , Protein Serine-Threonine Kinases/isolation & purification
12.
Biochem Biophys Res Commun ; 310(1): 14-8, 2003 Oct 10.
Article in English | MEDLINE | ID: mdl-14511641

ABSTRACT

We identified Ran-binding protein (RanBPM) as an interacting partner of the caspase-processed C-terminal domain of cyclin-dependent kinase 11 (CDK11(p46)) by using the yeast two-hybrid system. CDK11(p110) protein kinases are members of the cyclin-dependent kinase superfamily. During staurosporine-, Fas-, and tumor necrosis factor alpha-induced apoptosis caspase-processed activated CDK11(p46) is generated from larger CDK11(p110) isoforms. CDK11(p46) promotes apoptosis when it is ectopically expressed in human cells. However, the mechanism of signal transduction through CDK11(p46) is still unclear. In this study, we demonstrate that CDK11(p46) directly interacts with RanBPM in vitro and in human cells. RanBPM contains a conserved SPRY (repeats in splA and Ryr) domain and is localized both in the nucleus and cytoplasm. The SPRY domain of RanBPM is responsible for the association between CDK11(p46) and RanBPM. Furthermore, we show that CDK11(46) phosphorylates RanBPM.


Subject(s)
Cyclin-Dependent Kinases/metabolism , Nuclear Proteins/metabolism , ran GTP-Binding Protein/metabolism , Adaptor Proteins, Signal Transducing , Cell Line, Tumor , Cytoskeletal Proteins , Fluorescent Antibody Technique , Humans , Phosphorylation
13.
J Biol Chem ; 278(7): 5062-71, 2003 Feb 14.
Article in English | MEDLINE | ID: mdl-12446680

ABSTRACT

Cyclin-dependent kinase 11 (CDK11; also named PITSLRE) is part of the large family of p34(cdc2)-related kinases whose functions appear to be linked with cell cycle progression, tumorigenesis, and apoptotic signaling. However, substrates of CDK11 during apoptosis have not been identified. We used a yeast two-hybrid screening strategy and identified eukaryotic initiation factor 3 p47 protein (eIF3 p47) as an interacting partner of caspase-processed C-terminal kinase domain of CDK11 (CDK11(p46)). We demonstrate that the eIF3 p47 can interact with CDK11 in vitro and in vivo, and the interaction can be strengthened by stimulation of apoptosis. EIF3 p47 contains a Mov34/JAB domain and appears to interact with CDK11(p46) through this motif. We show in vitro that the caspase-processed CDK11(p46) can phosphorylate eIF3 p47 at a specific serine residue (Ser(46)) and that eIF3 p47 is phosphorylated in vivo during apoptosis. Purified recombinant CDK11(p46) inhibited translation of a reporter gene in vitro in a dose-dependent manner. In contrast, a kinase-defective mutant CDK11(p46M) did not inhibit translation of the reporter gene. Stable expression of CDK11(p46) in vivo inhibited the synthesis of a transfected luciferase reporter protein and overall cellular protein synthesis. These data provide insight into the cellular function of CDK11 during apoptosis.


Subject(s)
Apoptosis/physiology , Cyclin-Dependent Kinases/physiology , Eukaryotic Initiation Factor-3/physiology , Humans , Mutation , Phosphorylation , Protein Binding , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Signal Transduction , Tumor Cells, Cultured
14.
Arch Biochem Biophys ; 407(1): 103-16, 2002 Nov 01.
Article in English | MEDLINE | ID: mdl-12392720

ABSTRACT

Much effort has focused on the identification of MAPK cascades that are activated by the MEKK family of protein kinases. However, direct phosphorylation and regulation of the MEKK proteins has not been shown. To address this question, we have expressed recombinant (His)6FLAG.MEKK3 in Sf9 insect cells and tethered the purified protein to Ni-Sepharose so that we could precipitate interacting proteins and then identify such proteins by liquid chromatography and mass spectrometry (LC-MS). We identified 14-3-3 proteins as interacting with MEKK3, which suggested that (His)6FLAG.MEKK3 was phosphorylated on serine since 14-3-3 proteins are known to associate with phosphorylated proteins. We identified two phosphorylated amino acids at Ser166 and Ser337 of tryptic peptides derived from (His)6FLAG.MEKK3 by using LC-MS. Antibodies were developed that recognize the specific phosphorylated amino acid and with these antibodies, we demonstrate that various stimuli (tumor necrosis factor, arsenite, forskolin, and serum) promote phosphorylation of Ser166 and Ser337. However, neither of these phosphorylated amino acids is required for association with 14-3-3 protein or regulation of MEKK3-dependent ERK and JNK activity. Nonetheless, these results suggest that MEKK3 is a convergence point of multiple upstream signaling pathways.


Subject(s)
MAP Kinase Kinase Kinases/metabolism , Serine/metabolism , 14-3-3 Proteins , 3T3 Cells , Animals , COS Cells , Cells, Cultured , Humans , Insecta/cytology , MAP Kinase Kinase Kinase 3 , MAP Kinase Kinase Kinases/genetics , Mice , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 8 , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Phosphorylation , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Tyrosine 3-Monooxygenase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...