Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 62(42): e202304901, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37403384

ABSTRACT

Methanobactin OB3b (Mbn-OB3b) is a unique natural product with stunning affinity for copper ions (Ka ≈Cu(I) 1034 ). Here, we report the first total synthesis of Cu(I)-bound methanobactin OB3b featuring as key transformations a cyclodehydration-thioacylation sequence, to generate the conjugated heterocyclic systems, and a copper-templated cyclization, to complete the caged structure of the very sensitive target compound.

2.
Inorg Chem ; 50(5): 1983-90, 2011 Mar 07.
Article in English | MEDLINE | ID: mdl-21261279

ABSTRACT

We synthesized and characterized a set of new oxorhenium(V) complexes coordinated by various pyrazole containing phenol (L1-L3) and naphthol ligands (L4-L7). Depending on the starting material, we were able to selectively synthesize monosubstituded or disubstituted complexes of the type [ReOBr(2)L(PPh(3))] (1-7; L = L1-L7) and [ReOClL(2)] (L = L1 8; L2 9; L4 10; L6 11), respectively. All complexes are stable to air and moisture, both in solid state as well as in solution. Furthermore, the cationic oxorhenium(V) complex [ReO(L1)(2)(NCMe)](OTf) (8a) was obtained upon chloride abstraction with silver triflate from 8. All new complexes were able to catalyze the epoxidation of cis-cyclooctene in yields up to 64%. The ease of preparation and their tolerance to air and moisture, as well as the simple ligand modifications, make them an interesting class of novel catalysts. An attempted reduction of perchlorate ClO(4)(-) with complex 8 was unsuccessful. Molecular structures of complexes 1, 4, 6, 7, 8, 8a, 10, and 11 were determined by single crystal X-ray diffraction analyses.

3.
Dalton Trans ; 39(16): 3903-14, 2010 Apr 28.
Article in English | MEDLINE | ID: mdl-20372715

ABSTRACT

New derivatives of pyrazolate-based binucleating ligands HL with appended imine functions have been synthesized to provide a versatile set of ligand systems with different backbone substituents both at the pyrazole-C(4) and the imine-C (H, Me, Ph). These scaffolds have two adjacent coordination compartments akin to the alpha-diimine type. A series of binuclear palladium(II) complexes [LPd(2)Cl(3)] (1-4) and tetranuclear nickel(II) complexes [L(2)Ni(4)Br(6)(solvent)(4)] (5, 6) of the various ligands have been prepared and characterized, including X-ray structural analyses for two representative Pd and the two Ni complexes. Complexes 5 and 6 were found to contain an unusual central mu(4)-bromide. Mononuclear nickel(II) complexes [L(2)Ni] were detected as intermediates in the formation of the tetranuclear complexes and have been characterized by X-ray analyses in two cases (7, 8). The interconversion between 5' and 7 has been investigated by UV/Vis spectroscopy and ESI mass spectrometry, and magnetic coupling in the [L(2)Ni(4)Br(6)(solvent)(4)] complexes has been studied (SQUID). Trans-coupling via the central mu(4)-bromide is suggested to mediate significant antiferromagnetic interaction. The reactivity of such types of Pd and Ni complexes has been tested for the vinyl/addition polymerization of norbornene. In the presence of an excess of cocatalyst methylaluminoxane (MAO) the palladium complexes show high activity up to 5.9 x 10(6) g(PNB) mol(Pd)(-1) h(-1) at 20 degrees C, while activities of the nickel systems are much lower, but strongly solvent dependent. Detailed studies on the dependence of activity on polymerization conditions such as molar ratios of catalyst and cocatalyst, temperature, reaction time and solvent were carried out. All obtained polynorbornenes (PNB) were noncrystalline and insoluble, but have high glass transition temperatures (T(g)). Microstructures were analyzed by IR spectroscopy and solid state (CP/MAS) (13)C NMR, revealing distinct patterns for the PNB produced by Ni- or Pd-catalysts. Structure/activity correlations deduced for the complexes with different ligand systems suggest that activities and polymer microstructures depend rather on the metal type than on ligand intricacies.


Subject(s)
Coordination Complexes/chemistry , Nickel/chemistry , Norbornanes/chemistry , Palladium/chemistry , Polymers/chemistry , Pyrazoles/chemistry , Catalysis , Coordination Complexes/chemical synthesis , Crystallography, X-Ray , Molecular Conformation , Spectrophotometry, Ultraviolet
5.
Dalton Trans ; (37): 7756-64, 2009 Oct 07.
Article in English | MEDLINE | ID: mdl-19759950

ABSTRACT

The synthesis of new binucleating pyrazole-derived ligands (HL2, HL3) with bulky 2,6-diisopropylphenylimine side arms and backbone phenyl groups at the pyrazole-C4 and/or at the imine-C, which are derivatives from the known ligand HL1, is reported. Crystallographic analyses of three cobalt(II) complexes coordinated by ligands [L1-3]- reveal distinct metal to ligand ratios and different structural motifs in the solid state: [L1Co2Cl3(H2O)2(EtOH)] (1), [(L2)3Co4Cl5] (2), or [(L3)2Co4Cl6(H2O)5] (3). Metal ions are five-coordinate in 1, four- and six-coordiante in 2, and six-coordinate in 3. UV-Vis spectroscopy and ESI mass spectrometry suggest that complexes 2 and 3 retain their structures also in solution, whereas 1 partially dimerizes and is in equilibrium with tetrametallic species akin to 3. Magnetic susceptibility measurements indicate weak to moderate antiferromagnetic coupling between five-coordinate or between six-coordinate cobalt(II) ions, but weak ferromagnetic coupling between four- and six-coordinate cobalt(II).

6.
Inorg Chem ; 46(17): 7129-35, 2007 Aug 20.
Article in English | MEDLINE | ID: mdl-17655288

ABSTRACT

Substitution reactions of rhenium(V) oxo precursors [ReOCl3(PPh3)2] or [NBu4][ReOCl4] with the bidentate acetylacetone-derived ketoamine ligands APOH = 4-anilino-3-penten-2-one, DPOH = 4-[2,6-dimethylanilino]-3-penten-2-one, and MTPOH = 4-[2-(methylthio)anilino]-3-penten-2-one gave the complexes [ReO(APO)Cl2(PPh3)] (1), [ReO(DPO)Cl2(PPh3)] (2), and [NBu4][ReOLCl3] (3, L = APO; 4, L = DPO; 5, L = MTPO), respectively. All complexes exhibit only one ketoamino chelate, independent of the amount of ligand added to the rhenium precursors. The complexes were characterized by 1H and 13C NMR spectroscopy. X-ray crystal structures of the complexes 1, 2, 4, and 5, including that of MTPOH, were determined, revealing the trans position of the two oxygen atoms and the trans-Cl,Cl conformation in 1 and 2, in contrast to most other rhenium complexes of this type where the cis-Cl,Cl conformation is observed. Coordination of the potentially tridentate ligand MTPOH in 5 is bidentate with a dangling thioether substituent. Compound 2 shows catalytic activity in the oxidation of cis-cyclooctene with tert-butylhydroperoxide.

7.
Dalton Trans ; (12): 2124-9, 2005 Jun 21.
Article in English | MEDLINE | ID: mdl-15957054

ABSTRACT

Reaction of potassium salts of sterically demanding pyrazolates (pz = bis-3,5-tert-butylpyrazolate, pz= bis-3,5-tert-butyl-4-methylpyrazolate) with Re2O7 affords soluble eta2-pyrazolate complexes of the type [(eta2-pz)ReO3(THF)n](1: pz, n= 1 and 2: pz, n= 0). They were characterized by spectroscopic methods and by X-ray crystallography confirming the eta2-coordinate ligands. Complex 1 employing the ligand with a proton in the 4-position retains one molecule of THF, whereas the additional methyl group in 2 leads to the base-free compound 2. Compound 1 reacts with pyridine and 3,5-dimethylpyridine to form Lewis base adducts of the type [(eta2-pz)ReO3(L)](3: L = py; 4: L = 3,5-Me2py). The pronounced sensitivity towards water of these complexes is demonstrated by the reaction of 1 with one equivalent of water forming the corresponding pyrazolium perrhenate [ReO4][pzH2](5). Its solid state structure shows a hydrogen bonded dimeric assembly. Catalytic activity of 1 is established in oxygen atom transfer-reactions (OAT) from dimethylsulfoxide to triphenylphosphine, and in epoxidations of cyclooctene employing bis(trimethylsilyl) peroxide (BTSP).

SELECTION OF CITATIONS
SEARCH DETAIL
...