Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Anal Chim Acta ; 1275: 341577, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37524464

ABSTRACT

Volatile phenols possess "smoky, spicy" aromas and are routinely measured in grapes, wines and other foodstuffs for quality control. Routine analyses of volatile phenols rely on gas chromatography - mass spectrometry (GC-MS), but slow throughput of GC-MS can cause challenges during times of surge demand, i.e. following 'smoke taint' events involving forest fires near vineyards. Parallel extraction of headspace volatiles onto sorbent sheets (HS-SPMESH) followed by direct analysis in real time mass spectrometry (DART-MS) is a rapid alternative to conventional GC-MS approaches. However, HS-SPMESH extraction is poorly suited for lower volatility odorants, including volatile phenols. This work reports development and validation of an HS-SPMESH-DART-MS approach for five volatile phenols (4-ethylphenol, 4-ethylguiacol, guaiacol, 4-methylguaiacol, and cresols). Prior to HS-SPMESH extraction, volatile phenols were acetylated to facilitate their extraction. A unique feature of this work was the use of d6-Ac2O as a derivatizing agent to overcome issues with isobaric interferences inherent to chromatography-free MS techniques. The use of alkaline conditions during derivatization resulted in cumulative measurement of both free and bound forms of volatile phenols. The validated HS-SPMESH-DART-MS method achieved a throughput of 24 samples in ∼60 min (including derivatization and extraction time) with low limits of detection (<1 µg L-1) and good repeatability (3-6% RSD) in grape and wine matrices. Validation experiments with smoke-tainted grape samples indicated good correlation between total (free + bound) volatile phenols measured by HS-SPMESH-DART-MS and a gold standard GC-MS method.


Subject(s)
Vitis , Volatile Organic Compounds , Wine , Vitis/chemistry , Wine/analysis , Mass Spectrometry/methods , Phenols/analysis , Solid Phase Microextraction/methods , Smoke/analysis , Volatile Organic Compounds/analysis
2.
Molecules ; 27(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36234747

ABSTRACT

Parallel extraction of headspace volatiles from multiwell plates using sorbent sheets (HS-SPMESH) followed by direct analysis in real-time high-resolution mass spectrometry (DART-HRMS) can be used as a rapid alternative to solid-phase micro-extraction (SPME) gas-chromatography mass-spectrometry (GC-MS) for trace level volatile analyses. However, an earlier validation study of SPMESH-DART-MS using 3-isobutyl-2-methoxypyrazine (IBMP) in grape juice showed poor correlation between SPMESH-DART-MS and a gold standard SPME-GC-MS around the compound's odor detection threshold (<10 ng/kg) in grape juice, and lacked sufficient sensitivity to detect IBMP at this concentration in grape homogenate. In this work, we report on the development and validation of an improved SPMESH extraction approach that lowers the limit of detection (LOD < 0.5 ng/kg), and regulates crosstalk between wells (<0.5%) over a calibration range of 0.5−100 ng/kg. The optimized SPMESH-DART-MS method was validated using Cabernet Sauvignon and Merlot grape samples harvested from commercial vineyards in the central valley of California (n = 302) and achieved good correlation and agreement with SPME-GC-MS (R2 = 0.84) over the native range of IBMP (<0.5−20 ng/kg). Coupling of SPMESH to a lower resolution triple quadrupole (QqQ)-MS via a new JumpShot-HTS DART source also achieved low ng/kg detection limits, and throughput was improved through positioning stage optimizations which reduced time spent on intra-well SPMESH areas.


Subject(s)
Vitis , Gas Chromatography-Mass Spectrometry/methods , Pyrazines/analysis , Solid Phase Microextraction/methods , Vitis/chemistry
3.
J Agric Food Chem ; 70(25): 7805-7814, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35699964

ABSTRACT

Quantitative and qualitative measurements of trace-level analytes in plants or foodstuffs, e.g., secondary metabolites like carotenoids, are often performed at centralized core facilities or off-site laboratories. However, preparation, storage, and/or transport of both intact samples and sample extracts may be cumbersome and complicated, especially for air-sensitive analytes. We describe the development of inexpensive swellable microextraction (SweME) devices for extraction and storage of nonpolar analytes. SweME devices consist of a thin layer of poly(dimethylsiloxane) (PDMS) grafted onto a stainless steel support. Pretreating the SweME device with small volumes of the organic solvent causes the PDMS to swell. The swollen SweME device can then be immersed directly into complex matrices for absorptive extraction of low-molecular-weight, nonpolar analytes. Following storage, analytes can be solvent-desorbed prior to characterization. Proof-of-principle work with carotenoids from tomatoes and carrots demonstrates that SweME is appropriate for semiquantitative analyses and increases the stability of air-sensitive analytes during storage at ambient temperatures as compared to the solvent extracts. Carotenoid profiles (fractional carotenoid contributions) from tomato and carrot samples were well correlated between SweME and liquid-liquid extraction (R2 = 0.97 and 0.94). Lycopene, the most abundant carotenoid in tomatoes, saw a less than 20% decrease in extracted mass during 1 month of ambient SweME storage. Extractions and desorptions can be run in parallel using multiwell plates. In summary, swelled sorbent extraction with SweME devices is a convenient and inexpensive approach for isolation and storage of analytes in complex matrices and may be particularly well suited for evaluating large numbers of plant samples through external laboratories.


Subject(s)
Carotenoids , Liquid-Liquid Extraction , Solvents
4.
Hortic Res ; 9: uhac009, 2022.
Article in English | MEDLINE | ID: mdl-35369130

ABSTRACT

Malate is a major contributor to the sourness of grape berries (Vitis spp.) and their products, such as wine. Excessive malate at maturity, commonly observed in wild Vitis grapes, is detrimental to grape and wine quality and complicates the introgression of valuable disease resistance and cold hardy genes through breeding. This study investigated an interspecific Vitis family that exhibited strong and stable variation in malate at ripeness for five years and tested the separate contribution of accumulation, degradation, and dilution to malate concentration in ripe fruit in the last year of study. Genotyping was performed using transferable rhAmpSeq haplotype markers, based on the Vitis collinear core genome. Three significant QTL for ripe fruit malate on chromosomes 1, 7, and 17, accounted for over two-fold and 6.9 g/L differences, and explained 40.6% of the phenotypic variation. QTL on chromosomes 7 and 17 were stable in all and in three out of five years, respectively. Variation in pre-veraison malate was the major contributor to variation in ripe fruit malate (39%), and based on two and five years of data, respectively, their associated QTL overlapped on chromosome 7, indicating a common genetic basis. However, use of transferable markers on a closely related Vitis family did not yield a common QTL across families. This suggests that diverse physiological mechanisms regulate the levels of this key metabolite in the Vitis genus, a conclusion supported by a review of over a dozen publications from the past decade, showing malate-associated genetic loci on all 19 chromosomes.

5.
Genes (Basel) ; 12(12)2021 12 09.
Article in English | MEDLINE | ID: mdl-34946911

ABSTRACT

Hydroxycinnamylated anthocyanins (or simply 'acylated anthocyanins') increase color stability in grape products, such as wine. Several genes that are relevant for anthocyanin acylation in grapes have been previously described; however, control of the degree of acylation in grapes is complicated by the lack of genetic markers quantitatively associated with this trait. To characterize the genetic basis of anthocyanin acylation in grapevine, we analyzed the acylation ratio in two closely related biparental families, Vitis rupestris B38 × 'Horizon' and 'Horizon' × Illinois 547-1, for 2 and 3 years, respectively. The acylation ratio followed a bimodal and skewed distribution in both families, with repeatability estimates larger than 0.84. Quantitative trait locus (QTL) mapping with amplicon-based markers (rhAmpSeq) identified a strong QTL from 'Horizon' on chromosome 3, near 15.85 Mb in both families and across years, explaining up to 85.2% of the phenotypic variance. Multiple candidate genes were identified in the 14.85-17.95 Mb interval, in particular, three copies of a gene encoding an acetyl-CoA-benzylalcohol acetyltransferase-like protein within the two most strongly associated markers. Additional population-specific QTLs were found in chromosomes 9, 10, 15, and 16; however, no candidate genes were described. The rhAmpSeq markers reported here, which were previously shown to be highly transferable among the Vitis genus, could be immediately implemented in current grapevine breeding efforts to control the degree of anthocyanin acylation and improve the quality of grapes and their products.


Subject(s)
Anthocyanins/chemistry , Chromosomes, Plant/genetics , Plant Proteins/metabolism , Quantitative Trait Loci , Vitis/genetics , Wine/analysis , Acylation , Chromosome Mapping , Fruit/genetics , Fruit/growth & development , Fruit/metabolism , North America , Phenotype , Plant Proteins/genetics , Vitis/growth & development , Vitis/metabolism
6.
J Agric Food Chem ; 69(44): 13164-13172, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34709813

ABSTRACT

Copper-sulfhydryl complexes in wine can be disrupted by addition of brine to release free hydrogen sulfide (H2S), and the resulting "brine-releasable H2S" is reported to correlate with formation of H2S during bottle storage. However, both the mechanism of the brine-release assay and factors affecting the stability of copper sulfhydryls under brine-release conditions are not well understood. By varying brine composition and concentration, it is shown that release of copper-complexed H2S requires the presence of a halide (Cl- and Br-) and is not due to a general "salting-out" effect. Release of copper-complexed H2S by the brine dilution assay is highly temperature-dependent. When H2S and Cu(II) are added to a model wine, brine-releasable H2S decreases markedly (∼10-fold) after a 20 min incubation period prior to performing the brine-release assay. In commercial wines, the fraction of added H2S recovered through the brine-release assay was correlated with the initial glutathione (GSH) concentration (r2 = 0.58) but not with initial Cu. Negligible additional release of H2S from organopolysulfanes was observed following addition of a disulfide-reducing agent (tris(2-carboxyethyl)phosphine). As previous studies have reported a correlation between H2S formed under brine-release conditions and normal storage, these results suggest that the susceptibility of a wine to form latent copper-sulfhydryl precursors of H2S following copper addition is dependent on the concentration of sulfhydryls like GSH.


Subject(s)
Hydrogen Sulfide , Wine , Copper , Glutathione , Salts , Wine/analysis
7.
J Agric Food Chem ; 69(41): 12344-12353, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34618472

ABSTRACT

Poly(dimethylsiloxane)-based thin-film sorbent sheets (SPMESH) have previously been used for parallel headspace (HS) extraction prior to direct analysis in real-time mass spectrometry (DART-MS) for rapid quantitation of odorants in complex matrices. However, HS-SPMESH extraction is poorly suited for less volatile odorants, e.g., volatile phenols. This report describes modifications to the previous SPMESH extraction device, which make it amenable to parallel extraction of low-volatility analytes from multiwell plates under direct immersion (DI) conditions. Optimization and validation of the DI-SPMESH-DART-MS approach were performed on four volatile phenols (4-ethylphenol, 4-ethylguaiacol, 4-methylguaiacol, and guaiacol) of relevance to the quality of grape juices. Negative-ion mode DART-MS spectra showed a series of oxygenated adducts [M + nO - H]- for all analytes, but isobaric interferences could be limited for three of the four analytes by selecting an appropriate MS/MS transition. Signal suppression from nonvolatiles (sugars, acids) could be overcome by a rinse step. DI-SPMESH-DART-MS analysis of 24 samples could be performed in ∼45 min (30 min extraction, 16 min DART analysis) with 0.5-3 µg/L detection limits in aqueous and model juice solutions. In real grape juices (n = 5 cultivars), good accuracy (72-137%) could be achieved for two of the four volatile phenols initially investigated, 4-ethylphenol and 4-ethylguaiacol. However, poor accuracy was observed for guaiacol in some cultivars, and 4-methylguaiacol could not be quantitated due to interferences with other volatile phenols. Despite these limitations, DI-SPMESH-DART-MS/MS may be useful for prescreening a large number of samples prior to more selective conventional analyses.


Subject(s)
Vitis , Fruit and Vegetable Juices , Odorants , Phenols/analysis , Tandem Mass Spectrometry
8.
Foods ; 9(4)2020 Apr 02.
Article in English | MEDLINE | ID: mdl-32252228

ABSTRACT

Etched polymeric sorbent sheets (solid-phase mesh-enhanced sorption from headspace (SPMESH) sheets) were recently described as an alternative to solid-phase microextraction (SPME) for rapid, parallel, multi-sample extraction and pre-concentration of headspace volatiles. In this report, a workflow was evaluated based on SPMESH sheet extraction followed by direct analysis in real time-mass spectrometry (DART-MS) using grape samples harvested from multiple commercial vineyards at different maturities. SPMESH sheet-DART-MS(-MS) was performed on two grape-derived odorants related to wine quality: 3-isobutyl-2-methoxypyrazine (IBMP) in Cabernet Sauvignon and Merlot grape homogenate (n = 86 samples) and linalool in Muscat-type grape juice samples (n = 18 samples). As part of the optimization process, an MS-MS method was developed for IBMP and an equilibration procedure prior to extraction was established for homogenate samples. Following optimization, we achieved good correlation between SPMESH sheet-DART-MS and SPME-GC-MS for both IBMP (range by GC-MS = < 2 ng/L to 28 ng/L, R2 = 0.70) and linalool (range by GC-MS = 135 to 415 µg/L, R2 = 0.66). The results indicate SPMESH sheet-DART-MS is suitable for rapid measurements of trace level volatiles in grapes.

9.
Nat Genet ; 51(6): 1044-1051, 2019 06.
Article in English | MEDLINE | ID: mdl-31086351

ABSTRACT

Modern tomatoes have narrow genetic diversity limiting their improvement potential. We present a tomato pan-genome constructed using genome sequences of 725 phylogenetically and geographically representative accessions, revealing 4,873 genes absent from the reference genome. Presence/absence variation analyses reveal substantial gene loss and intense negative selection of genes and promoters during tomato domestication and improvement. Lost or negatively selected genes are enriched for important traits, especially disease resistance. We identify a rare allele in the TomLoxC promoter selected against during domestication. Quantitative trait locus mapping and analysis of transgenic plants reveal a role for TomLoxC in apocarotenoid production, which contributes to desirable tomato flavor. In orange-stage fruit, accessions harboring both the rare and common TomLoxC alleles (heterozygotes) have higher TomLoxC expression than those homozygous for either and are resurgent in modern tomatoes. The tomato pan-genome adds depth and completeness to the reference genome, and is useful for future biological discovery and breeding.


Subject(s)
Alleles , Fruit/genetics , Genetic Association Studies , Genome, Plant , Genomics , Quantitative Trait, Heritable , Solanum lycopersicum/genetics , Computational Biology/methods , Domestication , Genomics/methods , Humans , Open Reading Frames , Plant Breeding , Promoter Regions, Genetic , Selection, Genetic
10.
J Agric Food Chem ; 67(50): 13840-13847, 2019 Dec 18.
Article in English | MEDLINE | ID: mdl-30945545

ABSTRACT

The use of headspace thin-film microextraction devices (SPMESH) for parallel extraction of trace-level volatiles prior to direct analysis in real-time mass spectrometry (DART-MS) has been reported previously, in which volatiles were extracted from samples in multi-well plates. In this report, we demonstrate that headspace extraction of volatiles by SPMESH sheets can be performed directly from planar surfaces. When coupled with DART-MS, this approach yields volatile mass spectral images with at least 4 mm resolution. When samples were spotted onto general-purpose silica gel thin-layer chromatography (TLC) plates, the SPMESH extraction could reach equilibrium within 2-4 min and 48 samples could be extracted and analyzed in 14 min. Because volatilization of analytes from TLC plates was very rapid, SPMESH extraction was delayed by the addition of 5% polyethylene glycol. Good linearity was achieved in the microgram per liter to milligram per liter range for four odorants (3-isobutyl-2-methoxypyrazine, linalool, methyl anthranilate, and o-aminoacetophenone) in several matrices (water, 10% ethanol, juice, and grape macerate) using 5 µL sample sizes. Detection limits as low as 50 pg/spot (10 µg/L in grape macerate) could be achieved. In contrast to many reports on headspace solid-phase microextraction, negligible matrix effects were observed for ethanol and grape macerates compared to water. SPMESH can preserve volatile images from planar surfaces, and SPMESH-DART-MS from TLC plates is well-suited for rapid trace volatile analysis, especially with small sample sizes.


Subject(s)
Chromatography, Thin Layer/methods , Solid Phase Microextraction/methods , Vitis/chemistry , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/isolation & purification , Mass Spectrometry/methods
11.
Crit Rev Food Sci Nutr ; 59(11): 1728-1752, 2019.
Article in English | MEDLINE | ID: mdl-29451805

ABSTRACT

Volatile sulfur compounds (VSCs), particularly low molecular weight sulfhydryls like hydrogen sulfide (H2S) and methanethiol (MeSH), are often observed in wines with sulfurous off-aromas. Recent work has shown both H2S and MeSH can increase up to a few µM (> 40 µg/L) during anoxic storage, but the identity of the latent sources of these sulfhydryls is still disputed. This review critically evaluates the latent precursors and pathways likely to be responsible for the loss and formation of these sulfhydryls during wine storage based on the existing enology literature as well as studies from food chemistry, geochemistry, biochemistry, and synthetic chemistry. We propose that three precursor classes have sufficient concentration and metastability to serve as latent sulfhydryl precursors in wine: 1) transition metal-sulfhydryl complexes, particularly those formed following Cu(II) addition, which are released under anoxic conditions through an unknown mechanism; 2) asymmetric disulfides, polysulfanes, and (di)organopolysulfanes formed through transition-metal mediated oxidation (e.g., Cu(II)) of sulfhydryls or pesticide degradation, and released through sulfitolysis, metal-catalyzed thiol-disulfide exchange or related reactions; 3) S-alkylthioacetates, primarily formed during fermentation, and releasable hydrolytically. Some evidence also exists for S-amino acids serving as precursors. Based on these findings, we propose a "decision tree" approach to choosing appropriate strategies for managing wines with sulfurous off-aromas.


Subject(s)
Food Storage , Sulfhydryl Compounds/metabolism , Sulfur Compounds/metabolism , Wine/analysis , Disulfides/metabolism , Fermentation , Hydrogen Sulfide , Metals , Odorants , Oxidation-Reduction , Sulfates/metabolism , Sulfur Dioxide/metabolism
12.
Food Chem ; 274: 137-145, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30372918

ABSTRACT

Immature coffee cherries produce roast coffees with lower hedonic scores than those produced from mature cherries, but variation in volatile and sensory characteristics over a range of maturities is not well studied. In this work, cherries from two coffee cultivars (Caturra, Catimor) were sorted into seven maturity stages from fully immature (Stage 1, green) to fully overripe (Stage 7, purple). Volatile profiles of Stage 1 roast coffee had lower concentrations of carbohydrate degradation products and higher concentrations of N-heterocycles and phenols. Differences in volatiles among Stage 2 (partially immature, yellow-green) and subsequent stages were insignificant (p > 0.05) or else minor. Principle component analysis of the volatile data set also distinguished Stage 1 from other stages. Similarly, a trained cupping panel reported significantly lower sensory scores for Stage 1 as compared to Stages 2-7, but few differences among Stages 2-7. Thus, partially mature and overripe cherries may be appropriate for specialty coffee.


Subject(s)
Coffea/growth & development , Coffee/chemistry , Food-Processing Industry/methods , Taste , Volatile Organic Compounds/analysis , Coffea/chemistry , Humans , Phenols/analysis
13.
Anal Chem ; 90(22): 13806-13813, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30362714

ABSTRACT

Headspace (HS) extraction and preconcentration of volatiles by solid-phase microextraction (SPME) can improve the sensitivity and selectivity of ambient ionization-mass spectrometry approaches like direct analysis in real time (DART), but previous approaches to HS-SPME-DART-MS have been challenging to automate. This report describes the production of inexpensive, reusable solid-phase mesh-enhanced sorption from headspace (SPMESH) sheets by laser-etching mesh patterns into poly(dimethylsiloxane) (PDMS) sheets. Parallel headspace extraction of volatiles from multiple samples can be achieved by positioning the SPMESH sheets over multiwell plates and then attaching to a positioning stage for automated DART-MS quantitation. Using three representative odorants (3-isobutyl-2-methoxypyrazine, linalool, and methyl anthranilate), we achieved µg/L-ng/L detection limits with SPMESH-DART-MS, with the DART-MS step requiring only 17 min for 24 samples. Acceptable repeatability (24% or less day-to-day variation) and excellent recovery from a grape matrix (99-106%) could be achieved. Through use of a Teflon gasket and stainless steel spacers, cross-contamination between the headspaces of adjacent wells could be limited to roughly 1%. Optimum SPMESH extraction and desorption parameters were determined by response surface methodology. In summary, sheet-based SPMESH provides a sensitive, readily automated approach for coupling with DART-MS and achieving high-throughput trace-level volatile analyses.

14.
Molecules ; 23(10)2018 Sep 23.
Article in English | MEDLINE | ID: mdl-30249067

ABSTRACT

Headspace solid-phase microextraction (HS-SPME) coupled to gas chromatography⁻mass spectrometry (GC-MS) is widely employed for volatile analyses of plants, including mapping populations used in plant breeding research. Studies often employ a single internal surrogate standard, even when multiple analytes are measured, with the assumption that any relative changes in matrix effects among individuals would be similar for all compounds, i.e., matrix effects do not show Compound × Individual interactions. We tested this assumption using individuals from two plant populations: an interspecific grape (Vitis spp.) mapping population (n = 140) and a tomato (Solanum spp.) recombinant inbred line (RIL) population (n = 148). Individual plants from the two populations were spiked with a cocktail of internal standards (n = 6, 9, respectively) prior to HS-SPME-GC-MS. Variation in the relative responses of internal standards indicated that Compound × Individual interactions exist but were different between the two populations. For the grape population, relative responses among pairs of internal standards varied considerably among individuals, with a maximum of 249% relative standard deviation (RSD) for the pair of [U13C]hexanal and [U13C]hexanol. However, in the tomato population, relative responses of internal standard pairs varied much less, with pairwise RSDs ranging from 8% to 56%. The approach described in this paper could be used to evaluate the suitability of using surrogate standards for HS-SPME-GC-MS studies in other plant populations.


Subject(s)
Solanum lycopersicum/chemistry , Vitis/chemistry , Volatile Organic Compounds/isolation & purification , Gas Chromatography-Mass Spectrometry , Plant Breeding , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Solid Phase Microextraction , Volatile Organic Compounds/chemistry
15.
J Agric Food Chem ; 65(48): 10542-10549, 2017 Dec 06.
Article in English | MEDLINE | ID: mdl-29129055

ABSTRACT

The level of hydrogen sulfide (H2S) can increase during abiotic storage of wines, and potential latent sources of H2S are still under investigation. We demonstrate that elemental sulfur (S0) residues on grapes not only can produce H2S during fermentation but also can form precursors capable of generating additional H2S after bottle storage for 3 months. H2S could be released from S0-derived precursors by addition of a reducing agent (TCEP), but not by addition of strong brine to induce release of H2S from metal sulfide complexes. The size of the TCEP-releasable pool varied among yeast strains. Using the TCEP assay, multiple polar S0-derived precursors were detected following normal-phase preparative chromatography. Using reversed-phase liquid chromatography and high-resolution mass spectrometry, we detected an increase in the levels of diglutathione trisulfane (GSSSG) and glutathione disulfide (GSSG) in S0-fermented red wine and an increase in the levels of glutathione S-sulfonate (GSSO3-) and tetrathionate (S4O62-) in S0-fermented white wine as compared to controls. GSSSG, but not S4O62-, was shown to evolve H2S in the presence of TCEP. Pathways for the formation of GSSSG, GSSG, GSSO3-, and S4O62- from S0 are proposed.


Subject(s)
Hydrogen Sulfide/metabolism , Wine/analysis , Yeasts/metabolism , Hydrogen Sulfide/chemistry , Sulfur/analysis , Sulfur/metabolism , Vitis/chemistry , Vitis/microbiology , Wine/microbiology
16.
J Agric Food Chem ; 65(42): 9353-9359, 2017 Oct 25.
Article in English | MEDLINE | ID: mdl-28965401

ABSTRACT

Ambient ionization mass spectrometric (AI-MS) techniques like direct analysis in real time (DART) offer the potential for rapid quantitative analyses of trace volatiles in food matrices, but performance is generally limited by the lack of preconcentration and extraction steps. The sensitivity and selectivity of AI-MS approaches can be improved through solid-phase microextraction (SPME) with appropriate thin-film geometries, for example, solid-phase mesh-enhanced sorption from headspace (SPMESH). This work improves the SPMESH-DART-MS approach for use in food analyses and validates the approach for trace volatile analysis for two compounds in real samples (grape macerates). SPMESH units prepared with different sorbent coatings were evaluated for their ability to extract a range of odor-active volatiles, with poly(dimethylsiloxane)/divinylbenzene giving the most satisfactory results. In combination with high-resolution mass spectrometry (HRMS), detection limits for SPMESH-DART-MS under 4 ng/L in less than 30 s acquisition times could be achieved for some volatiles [3-isobutyl-2-methoxypyrazine (IBMP) and ß-damascenone]. A comparison of SPMESH-DART-MS and SPME-GC-MS quantitation of linalool and IBMP demonstrates excellent agreement between the two methods for real grape samples (r2 ≥ 0.90), although linalool measurements appeared to also include isobaric interference.


Subject(s)
Mass Spectrometry/methods , Vitis/chemistry , Volatile Organic Compounds/chemistry , Flavoring Agents/chemistry , Flavoring Agents/isolation & purification , Solid Phase Microextraction , Volatile Organic Compounds/isolation & purification
17.
J Agric Food Chem ; 64(43): 8191-8199, 2016 Nov 02.
Article in English | MEDLINE | ID: mdl-27696840

ABSTRACT

In red winemaking, the extractability of condensed tannins (CT) can vary considerably even under identical fermentation conditions, and several explanations for this phenomenon have been proposed. Recent work has demonstrated that grape pathogenesis-related proteins (PRPs) may limit retention of CT added to finished wines, but their relevance to CT extractability has not been evaluated. In this work, Vitis vinifera and interspecific hybrids (Vitis ssp.) from both hot and cool climates were vinified under small-scale, controlled conditions. The final CT concentration in wine was well modeled from initial grape tannin and juice protein concentrations using the Freundlich equation (r2= 0.686). In follow-up experiments, separation and pretreatment of juice by bentonite, heating, freezing, or exogenous tannin addition reduced protein concentrations in juices from two grape varieties. The bentonite treatment also led to greater wine CT for one of the varieties, indicating that prefermentation removal of grape protein may be a viable approach to increasing wine CT.


Subject(s)
Fermentation , Plant Proteins/chemistry , Tannins/chemistry , Vitis/chemistry , Wine , Climate , Fruit and Vegetable Juices , Solubility , Tannins/metabolism , Vitis/metabolism
18.
Anal Chem ; 88(17): 8617-23, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27480695

ABSTRACT

Quantitation of trace-level (µg/L to ng/L) volatile compounds is routinely performed in a broad range of applications, including analyses of odorants, pesticide residues, or toxins in foodstuffs and related matrices. Conventional analyses based on gas chromatography-mass spectrometry (GC-MS) are limited by low throughput, and ambient approaches to sample introduction have typically had poor sensitivity. We prepared polydimethylsiloxane-coated stainless steel meshes for extraction and preconcentration of volatiles (Solid Phase Mesh Enhanced Sorption from Headspace, SPMESH), which could then be analyzed by Direct Analysis in Real Time (DART)-MS. The SPMESH cards were characterized by electron microscopy, and figures of merit for the approach were determined using two representative volatiles: 2-isobutyl-3-methoxypyrazine (IBMP) and linalool. Using DART-MS/MS and isotopically labeled internal standards, we achieved detection limits of 21 ng/L and 71 µg/L for IBMP and linalool in water. Good accuracy and precision could also be achieved for IBMP spikes in grape macerate, although accuracy for linalool was compromised by the presence of interferences. Detection limits could be further improved by an order of magnitude through the use of high resolution (HR) MS. Because extraction can be performed inexpensively in parallel and because it requires short data acquisition times (<1 min), SPMESH-DART-MS may be appropriate for high throughput trace level volatile analyses.

19.
PLoS One ; 11(3): e0149560, 2016.
Article in English | MEDLINE | ID: mdl-26974672

ABSTRACT

In winegrapes (Vitis spp.), fruit quality traits such as berry color, total soluble solids content (SS), malic acid content (MA), and yeast assimilable nitrogen (YAN) affect fermentation or wine quality, and are important traits in selecting new hybrid winegrape cultivars. Given the high genetic diversity and heterozygosity of Vitis species and their tendency to exhibit inbreeding depression, linkage map construction and quantitative trait locus (QTL) mapping has relied on F1 families with the use of simple sequence repeat (SSR) and other markers. This study presents the construction of a genetic map by single nucleotide polymorphisms identified through genotyping-by-sequencing (GBS) technology in an F2 mapping family of 424 progeny derived from a cross between the wild species V. riparia Michx. and the interspecific hybrid winegrape cultivar, 'Seyval'. The resulting map has 1449 markers spanning 2424 cM in genetic length across 19 linkage groups, covering 95% of the genome with an average distance between markers of 1.67 cM. Compared to an SSR map previously developed for this F2 family, these results represent an improved map covering a greater portion of the genome with higher marker density. The accuracy of the map was validated using the well-studied trait berry color. QTL affecting YAN, MA and SS related traits were detected. A joint MA and SS QTL spans a region with candidate genes involved in the malate metabolism pathway. We present an analytical pipeline for calling intercross GBS markers and a high-density linkage map for a large F2 family of the highly heterozygous Vitis genus. This study serves as a model for further genetic investigations of the molecular basis of additional unique characters of North American hybrid wine cultivars and to enhance the breeding process by marker-assisted selection. The GBS protocols for identifying intercross markers developed in this study can be adapted for other heterozygous species.


Subject(s)
Chimera/genetics , Fruit/genetics , Heterozygote , Polymorphism, Single Nucleotide , Quantitative Trait, Heritable , Vitis/genetics
20.
J Agric Food Chem ; 64(6): 1309-17, 2016 Feb 17.
Article in English | MEDLINE | ID: mdl-26806526

ABSTRACT

Exogenous additions of condensed tannin (CT) to must or wine are a common winemaking practice, but many studies have reported inexplicably low and variable retention of added CT. We observed that additions of purified CT to red wines can result in the formation of an insoluble precipitate with high nitrogen content. Proteomic analysis of the precipitant identified several classes of pathogenesis-related proteins. Proteins in juices and red wines were quantitated by SDS-PAGE and were highest in native Vitis spp., followed by interspecific hybrids and Vitis vinifera. Wine protein was positively correlated with the ratio of juice protein to the quantity of tannin derived from fruit. The binding of added CT by wine protein could be well modeled by the Freundlich equation. These observations may explain the poor CT retention in previous studies, particularly for interspecific hybrids, and also indicate that protein removal during winemaking may improve exogenous CT retention.


Subject(s)
Food Additives/pharmacology , Plant Proteins/metabolism , Proanthocyanidins/pharmacology , Vitis/metabolism , Wine/analysis , Electrophoresis, Polyacrylamide Gel , Food Additives/analysis , Plant Proteins/analysis , Proanthocyanidins/analysis , Proteomics , Vitis/chemistry , Vitis/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...