Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Stem Cell Res Ther ; 11(1): 247, 2020 06 25.
Article in English | MEDLINE | ID: mdl-32586372

ABSTRACT

BACKGROUND: Induced pluripotent stem cells (iPSCs) have enormous potential in developmental biology studies and in cellular therapies. Although extensively studied and characterized in human and murine models, iPSCs from animals other than mice lack reproducible results. METHODS: Herein, we describe the generation of robust iPSCs from equine and bovine cells through lentiviral transduction of murine or human transcription factors Oct4, Sox2, Klf4, and c-Myc and from human and murine cells using similar protocols, even when different supplementations were used. The iPSCs were analyzed regarding morphology, gene and protein expression of pluripotency factors, alkaline phosphatase detection, and spontaneous and induced differentiation. RESULTS: Although embryonic-derived stem cells are yet not well characterized in domestic animals, generation of iPS cells from these species is possible through similar protocols used for mouse or human cells, enabling the use of pluripotent cells from large animals for basic or applied purposes. Herein, we also infer that bovine iPS (biPSCs) exhibit similarity to mouse iPSCs (miPSCs), whereas equine iPSs (eiPSCs) to human (hiPSCs). CONCLUSIONS: The generation of reproducible protocols in different animal species will provide an informative tool for producing in vitro autologous pluripotent cells from domestic animals. These cells will create new opportunities in animal breeding through transgenic technology and will support a new era of translational medicine with large animal models.


Subject(s)
Induced Pluripotent Stem Cells , Animals , Animals, Domestic , Cattle , Cell Differentiation , Cellular Reprogramming , Embryonic Stem Cells , Fibroblasts , Horses , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/genetics , Mice , Octamer Transcription Factor-3/genetics , SOXB1 Transcription Factors/genetics
2.
Hum Gene Ther ; 31(1-2): 57-69, 2020 01.
Article in English | MEDLINE | ID: mdl-31608704

ABSTRACT

Chronic traumatic encephalopathy (CTE) is a progressive neurodegenerative disorder caused by repetitive trauma to the central nervous system (CNS) suffered by soldiers, contact sport athletes, and civilians following accident-related trauma. CTE is a CNS tauopathy, with trauma-induced inflammation leading to accumulation of hyperphosphorylated forms of the microtubule-binding protein Tau (pTau), resulting in neurofibrillary tangles and progressive loss of neurons. At present, there are no therapies to treat CTE. We hypothesized that direct CNS administration of an adeno-associated virus (AAV) vector coding for an anti-pTau antibody would generate sufficient levels of anti-pTau in the CNS to suppress pTau accumulation thus interrupting the pathogenic process. Using a serotype AAVrh.10 gene transfer vector coding for a monoclonal antibody directed against pTau, we demonstrate the feasibility of this strategy in a murine CTE model in which pTau accumulation was elicited by repeated traumatic brain injury (TBI) using a closed cortical impact procedure over 5 days. Direct delivery of AAVrh.10 expression vectors coding for either of the two different anti-pTau antibodies to the hippocampus of these TBI mice significantly reduced pTau levels across the CNS. Using doses that can be safely scaled to humans, the data demonstrate that CNS administration of AAVrh.10anti-pTau is effective, providing a new strategy to interrupt the CTE consequences of TBI.


Subject(s)
Chronic Traumatic Encephalopathy/genetics , Chronic Traumatic Encephalopathy/therapy , Genetic Therapy , tau Proteins/genetics , Animals , Antibodies, Monoclonal/pharmacology , Brain/metabolism , Brain/pathology , Dependovirus/genetics , Disease Management , Disease Models, Animal , Disease Susceptibility , Genetic Therapy/adverse effects , Genetic Therapy/methods , Genetic Vectors/genetics , Humans , Immunohistochemistry , Male , Mice , Mice, Transgenic , Neurons/metabolism , Protein Binding , tau Proteins/antagonists & inhibitors , tau Proteins/metabolism
3.
Protein Expr Purif ; 168: 105552, 2020 04.
Article in English | MEDLINE | ID: mdl-31866372

ABSTRACT

Neurturin is a potent neurotrophic factor that has been investigated as a potential therapeutic agent for the treatment of neurodegenerative diseases, including Parkinson's disease, and, more recently, for the treatment of type II diabetes. However, purification of neurturin for clinical applications has been hampered by its low solubility in aqueous solutions. Here we describe the development of a scalable manufacturing process for recombinant neurturin from E. coli. inclusion bodies. Neurturin was refolded from solubilized inclusion bodies by fed-batch dilution refolding with a titer of 90 mg per liter refold and a refold yield of 89%. A two-step purification process using cation exchange and hydrophobic interaction chromatography, followed by formulation using tangential flow filtration resulted in an overall process yield of about 56 mg purified neurturin per liter refold. Solubility of neurturin during the purification process was maintained by the addition of 15% (w/v) glycerol to all buffers. For clinical applications and parenteral administration glycerol was replaced by 15% (w/v) sulfobutyl ether-beta-cyclodextrin (i.e. Captisol) in the drug substance formulation buffer. The final purified product had low or undetectable levels of product-related impurities and concentrations of process-related contaminants such as host cell proteins, host cell DNA, endotoxins and Triton X-100 were reduced more than 10,000-fold or below the limit of detection. Bioactivity of purified recombinant neurturin was demonstrated in a cell-based assay by activation of the MAPK signaling pathway.


Subject(s)
Escherichia coli/genetics , Inclusion Bodies/chemistry , Neurturin/genetics , Xylans/chemistry , Cloning, Molecular , Enzyme Stability , Escherichia coli/metabolism , Gene Expression , Genes, Reporter , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Hydrogen-Ion Concentration , Luciferases/genetics , Luciferases/metabolism , Neurturin/chemistry , Neurturin/metabolism , Protein Refolding , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Serum Response Element/genetics , Temperature , Xylans/metabolism , beta-Cyclodextrins/chemistry
4.
Diabetes ; 66(7): 2007-2018, 2017 07.
Article in English | MEDLINE | ID: mdl-28408435

ABSTRACT

Neurturin (NRTN), a member of the glial-derived neurotrophic factor family, was identified from an embryonic chicken pancreatic cDNA library in a screen for secreted factors. In this study, we assessed the potential antidiabetic activities of NRTN relative to liraglutide, a glucagon-like peptide 1 receptor agonist, in Zucker diabetic fatty (ZDF) rats. Subcutaneous administration of NRTN to 8-week-old male ZDF rats prevented the development of hyperglycemia and improved metabolic parameters similar to liraglutide. NRTN treatment increased pancreatic insulin content and ß-cell mass and prevented deterioration of islet organization. However, unlike liraglutide-treated rats, NRTN-mediated improvements were not associated with reduced body weight or food intake. Acute NRTN treatment did not activate c-Fos expression in key feeding behavior and metabolic centers in ZDF rat brain or directly enhance glucose-stimulated insulin secretion from pancreatic ß-cells. Treating 10-week-old ZDF rats with sustained hyperglycemia with liraglutide resulted in some alleviation of hyperglycemia, whereas NRTN was not as effective despite improving plasma lipids and fasting glucose levels. Interestingly, coadministration of NRTN and liraglutide normalized hyperglycemia and other metabolic parameters, demonstrating that combining therapies with distinct mechanism(s) can alleviate advanced diabetes. This emphasizes that therapeutic combinations can be more effective to manage diabetes in individuals with uncontrolled hyperglycemia.


Subject(s)
Blood Glucose/drug effects , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/metabolism , Hypoglycemic Agents/pharmacology , Insulin-Secreting Cells/drug effects , Liraglutide/pharmacology , Neurturin/pharmacology , Animals , Blood Glucose/metabolism , Body Weight/drug effects , Disease Models, Animal , Eating/drug effects , Feeding Behavior/drug effects , Glucagon-Like Peptide-1 Receptor/agonists , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Islets of Langerhans/drug effects , Islets of Langerhans/metabolism , Islets of Langerhans/pathology , Male , Organ Size , Proto-Oncogene Proteins c-fos/drug effects , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Zucker
5.
Vasc Endovascular Surg ; 48(3): 207-16, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24399130

ABSTRACT

Angiogenic therapies for critical limb ischemia were tested in a mouse model. The mice were anesthetized and their femoral arteries were ligated. The animals were treated with bone marrow mononuclear cells (BMMCs) alone, BMMCs combined with plasmid vector encoding granulocyte macrophage colony-stimulating factor (GM-CSF), received no treatment, or no intervention (controls). The degree of ischemia was monitored for 4 weeks using a visual scale. Muscle atrophy and strength were assessed at 4 weeks postoperatively; the mice were then killed. In treated animals, total necrosis of the limb was not found, the weight of the gastrocnemius and quadriceps muscles was significantly higher, functional ability and tissue regeneration were significantly increased, and muscle impairment and adipocyte presence were significantly reduced compared with untreated animals. At inducing angiogenesis, the BMMCs alone was more effective than BMMCs combined with plasmid vector encoding GM-CSF. Treated animals showed increased angiogenesis compared with ischemic untreated ones.


Subject(s)
Bone Marrow Transplantation , Genetic Therapy , Granulocyte-Macrophage Colony-Stimulating Factor/biosynthesis , Ischemia/therapy , Neovascularization, Physiologic , Quadriceps Muscle/blood supply , Animals , Cells, Cultured , Critical Illness , Disease Models, Animal , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Hindlimb , Ischemia/genetics , Ischemia/metabolism , Ischemia/physiopathology , Male , Mice , Mice, Inbred BALB C , Muscle Strength , Muscular Atrophy/pathology , Muscular Atrophy/physiopathology , Muscular Atrophy/therapy , Necrosis , Quadriceps Muscle/pathology , Quadriceps Muscle/physiopathology , Time Factors , Transfection
6.
PLoS One ; 8(8): e70605, 2013.
Article in English | MEDLINE | ID: mdl-23950970

ABSTRACT

The a priori identification of induced pluripotent stem cells remains a challenge. Being able to quickly identify the most embryonic stem cell-similar induced pluripotent stem cells when validating results could help to reduce costs and save time. In this context, tools based on non-classic logic can be useful in creating aid-systems based on visual criteria. True colonies when viewed at 100x magnification have been found to have the following 3 characteristics: a high degree of border delineation, a more uniform texture, and the absence of a cracked texture. These visual criteria were used for fuzzy logic modeling. We investigated the possibility of predicting the presence of alkaline phosphatase activity, typical of true induced pluripotent stem cell colonies, after 25 individuals, with varying degrees of experience in working with murine iPS cells, categorized the images of 136 colonies based on visual criteria. Intriguingly, the performance evaluation by area under the ROC curve (16 individuals with satisfactory performance), Spearman correlation (all statistically significant), and Cohen's Kappa agreement analysis (all statistically significant) demonstrates that the discriminatory capacity of different evaluators are similar, even those who have never cultivated cells. Thus, we report on a new system to facilitate visual identification of murine- induced pluripotent stem cell colonies that can be useful for staff training and opens the possibility of exploring visual characteristics of induced pluripotent stem cell colonies with their functional peculiarities. The fuzzy model has been integrated as a web-based tool named "2see-iPS" which is freely accessed at http://genetica.incor.usp.br/2seeips/.


Subject(s)
Fuzzy Logic , Image Processing, Computer-Assisted/methods , Induced Pluripotent Stem Cells/cytology , Alkaline Phosphatase/metabolism , Animals , Cells, Cultured , Induced Pluripotent Stem Cells/metabolism , Mice
7.
J Gene Med ; 12(3): 310-9, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20077434

ABSTRACT

BACKGROUND: Vascular endothelial growth factor (VEGF) has mostly been tested to treat ischemic diseases, although the outcomes obtained are not satisfactory. Our hypothesis is that the local transient expression of VEGF and stem cell mobilizer granulocyte colony-stimulating factor (G-CSF) genes in ischemic limbs can complement their activities and be more efficient for limb recovery. METHODS: Limb ischemia was surgically induced in mice and 50 microg of VEGF and/or G-CSF genes were locally transferred by electroporation. After 3-4 weeks, evidence of necrosis by visual inspection, capillary density, muscle mass, muscle force and hematopoietic cell mobilization were evaluated. RESULTS: After 4 weeks, 70% and 90% of the animals of the ischemic group (IG) and VEGF-treated group (VG), respectively, presented limb necrosis, in contrast to only 10% observed in the group of mice treated with both VEGF and G-CSF genes (VGG). Recovery of muscle mass and muscle force was higher than 60% in the VGG compared to the non-ischemic group. The mobilization of Sca1+ cells and neutrophils was also higher in the VGG, which may explain the lower level of necrosis observed in this group (22%, in contrast to 70% in the IG). Capillary density and degree of fibrosis were determined in weeks 3 and 4, and also showed a clear benefit as a result of the use of the G-CSF and VEGF genes together. CONCLUSIONS: Gene therapy using VEGF and G-CSF demonstrated a synergistic effect promoting vessel and tissue repair in mouse hind limb ischemia.


Subject(s)
Extremities/blood supply , Genetic Therapy/methods , Granulocyte Colony-Stimulating Factor/genetics , Ischemia/therapy , Peripheral Vascular Diseases/therapy , Vascular Endothelial Growth Factor A/genetics , Animals , Ischemia/blood , Ischemia/etiology , Male , Mice , Mice, Inbred BALB C , Muscle, Skeletal/blood supply , Muscle, Skeletal/physiology , Neovascularization, Physiologic/genetics , Peripheral Vascular Diseases/complications , Regeneration/genetics
8.
J Gene Med ; 11(4): 345-53, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19194978

ABSTRACT

BACKGROUND: Granulocyte-colony-stimulating factor (GM-CSF) is a pleiotropic factor for hematopoiesis that stimulates myeloblasts, monoblasts and mobilization of bone marrow stem cells. Therefore, the GM-CSF gene is a potential candidate for vessel formation and tissue remodeling in the treatment of ischemic diseases. METHODS: A new mouse limb ischemia was established by surgery and gene transfer was performed by injection of 100 microg of a plasmid carrying GM-CSF. Muscle force and weight, histology, capillary density, circulating stem cells and monocytes were determined after 3-4 weeks. RESULTS: More than 60% of nontreated ischemic animals showed gangrene below the heel after 4 weeks, whereas the GM-CSF gene-treated animals showed only darkening of nails or toes. These animals demonstrated a full recovery of the affected muscles in terms of weight, force and muscle fiber structure, but the muscles of nontreated ischemic animals lost approximately 50% weight, 86% force and their regular structure. When the GM-CSF gene was injected into the contralateral limb, only partial loss was observed, demonstrating a distant effect of GM-CSF. The capillary density in the GM-CSF-treated group was 52% higher in relation to the nontreated group. Blood analysis by flow cytometry showed that the GM-CSF-treated group had 10-20% higher levels of circulating monocytes and Sca-1(+). CONCLUSIONS: We conclude that the direct administration of GM-CSF gene in limb ischemia had a strong therapeutic effect because it promoted the recovery of muscle mass, force and structure by mobilizing therapeutic cells and augmenting the number of vessels.


Subject(s)
Genetic Therapy/methods , Granulocyte-Macrophage Colony-Stimulating Factor/administration & dosage , Ischemia/therapy , Acute Disease , Animals , Disease Models, Animal , Extremities/pathology , Hematopoiesis/drug effects , Mice , Muscle, Skeletal/drug effects , Neovascularization, Physiologic/drug effects , Plasmids/administration & dosage , Treatment Outcome
9.
Vaccine ; 26(31): 3812-7, 2008 Jul 23.
Article in English | MEDLINE | ID: mdl-18556095

ABSTRACT

Aiming to evaluate some parameters to influence the immune response to DNA vaccination, we compare three protocols of DNA immunization (i.m. injections, i.m. injections followed by electroporation, and the effect of i.p. injection of stably antigen-transfected cells before DNA administration), using three different antigens. Statistical analyses showed that electroporation after intramuscular injections provided an immune response comparable to that obtained by pre-treatment with antigen-transfected cells and similar to that obtained by protein immunization. The results allowed us selecting a protocol that worked well for all three antigens and reinforced the idea that high level of gene expression is essential to get good immunization.


Subject(s)
Electroporation , Vaccination/methods , Vaccines, DNA/administration & dosage , Vaccines, DNA/immunology , Adoptive Transfer , Animals , Female , Injections, Intramuscular , Mice , Mice, Inbred BALB C
10.
BMC Biotechnol ; 4: 29, 2004 Dec 02.
Article in English | MEDLINE | ID: mdl-15575952

ABSTRACT

BACKGROUND: The blasticidin S resistance gene (bsr) is a selectable marker used for gene transfer experiments. The bsr gene encodes for blasticidin S (BS) deaminase, which has a specific activity upon BS. Therefore, its expression is supposed to be harmless in cells. The work reported on herein consisted of experiments to verify a possible toxicity of bsr on mammalian cells, which include several cell lines and primary cultures. RESULTS: Murine keratinocyte BALB/MK and human primary keratinocyte cells transduced with the retroviral vector LBmSN, which has an improved expression system of bsr, namely bsrm, died in five days after the transduction. Meanwhile the control vector LBSN, which expresses bsr, did not provoke cell death. The lethal activity of bsrm was observed only in human keratinocytes and BALB/MK cells among the cell types tested here. Death appears to be mediated by a factor, which is secreted by the BALB/MK transduced cells. CONCLUSION: By our study we demonstrated that the expression of bsrm gene is toxic to human keratinocytes and BALB/MK cells. It is likely over expression of BS deaminase gene is responsible for the death.


Subject(s)
Aminohydrolases/genetics , Aminohydrolases/toxicity , Gene Expression Regulation, Enzymologic/physiology , Genetic Markers/genetics , Keratinocytes/metabolism , Animals , Cell Count , Cell Death/genetics , Cell Line , Genes, Lethal/genetics , Genetic Vectors/genetics , Genetic Vectors/toxicity , Humans , Keratinocytes/chemistry , Mice , Mice, Inbred BALB C , NIH 3T3 Cells/chemistry , NIH 3T3 Cells/metabolism , Nucleosides/genetics , Nucleosides/metabolism , Retroviridae/genetics , Retroviridae/metabolism , Transduction, Genetic/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...