Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Nat Commun ; 14(1): 6461, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37833253

ABSTRACT

The most prevalent genetic form of inherited arrhythmogenic cardiomyopathy (ACM) is caused by mutations in desmosomal plakophilin-2 (PKP2). By studying pathogenic deletion mutations in the desmosomal protein PKP2, here we identify a general mechanism by which PKP2 delocalization restricts actomyosin network organization and cardiac sarcomeric contraction in this untreatable disease. Computational modeling of PKP2 variants reveals that the carboxy-terminal (CT) domain is required for N-terminal domain stabilization, which determines PKP2 cortical localization and function. In mutant PKP2 cells the expression of the interacting protein MYH10 rescues actomyosin disorganization. Conversely, dominant-negative MYH10 mutant expression mimics the pathogenic CT-deletion PKP2 mutant causing actin network abnormalities and right ventricle systolic dysfunction. A chemical activator of non-muscle myosins, 4-hydroxyacetophenone (4-HAP), also restores normal contractility. Our findings demonstrate that activation of MYH10 corrects the deleterious effect of PKP2 mutant over systolic cardiac contraction, with potential implications for ACM therapy.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Cardiomyopathies , Humans , Arrhythmogenic Right Ventricular Dysplasia/genetics , Arrhythmogenic Right Ventricular Dysplasia/metabolism , Actomyosin/genetics , Mutation , Cardiomyopathies/genetics , Plakophilins/genetics , Plakophilins/metabolism
2.
Article in English | MEDLINE | ID: mdl-37059386

ABSTRACT

Dihydrosphingolipids are lipids biosynthetically related to ceramides. An increase in ceramides is associated with enhanced fat storage in the liver, and inhibition of their synthesis is reported to prevent the appearance of steatosis in animal models. However, the precise association of dihydrosphingolipids with non-alcoholic fatty liver disease (NAFLD) is yet to be established. We employed a diet induced NAFLD mouse model to study the association between this class of compounds and disease progression. Mice fed a high-fat diet were sacrificed at 22, 30 and 40 weeks to reproduce the full spectrum of histological damage found in human disease, steatosis (NAFL) and steatohepatitis (NASH) with and without significant fibrosis. Blood and liver tissue samples were obtained from patients whose NAFLD severity was assessed histologically. To demonstrate the effect of dihydroceramides over NAFLD progression we treated mice with fenretinide an inhibitor of dihydroceramide desaturase-1 (DEGS1). Lipidomic analyses were performed using liquid chromatography-tandem mass spectrometry. Triglycerides, cholesteryl esters and dihydrosphingolipids were increased in the liver of model mice in association with the degree of steatosis and fibrosis. Dihydroceramides increased with the histological severity observed in liver samples of mice (0.024 ± 0.003 nmol/mg vs 0.049 ± 0.005 nmol/mg, non-NAFLD vs NASH-fibrosis, p < 0.0001) and patients (0.105 ± 0.011 nmol/mg vs 0.165 ± 0.021 nmol/mg, p = 0.0221). Inhibition of DEGS1 induce a four-fold increase in dihydroceramides improving steatosis but increasing the inflammatory activity and fibrosis. In conclusion, the degree of histological damage in NAFLD correlate with dihydroceramide and dihydrosphingolipid accumulation. LAY SUMMARY: Accumulation of triglyceride and cholesteryl ester lipids is the hallmark of non-alcoholic fatty liver disease. Using lipidomics, we examined the role of dihydrosphingolipids in NAFLD progression. Our results demonstrate that de novo dihydrosphingolipid synthesis is an early event in NAFLD and the concentrations of these lipids are correlated with histological severity in both mouse and human disease.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Animals , Mice , Non-alcoholic Fatty Liver Disease/pathology , Fibrosis , Triglycerides , Ceramides
3.
Mol Cell Oncol ; 7(6): 1809958, 2020 Sep 08.
Article in English | MEDLINE | ID: mdl-33235912

ABSTRACT

Small extracellular vesicles released by fibroblasts from young human donors diminish lipid peroxidation in senescent cells and in different old mice organs due to their enrichment in Glutathione-S-transferase Mu lipid antioxidant activity.

4.
Vaccines (Basel) ; 8(1)2020 Mar 23.
Article in English | MEDLINE | ID: mdl-32210040

ABSTRACT

Leishmania infantum parasites cause a severe form of visceral leishmaniasis in human and viscerocutaneous leishmaniasis in dogs. Recently, we reported that immunization with an attenuated L. infantum cell line, lacking the hsp70-II gene, protects against the development of murine cutaneous leishmaniasis. In this work, we analyzed the vaccine potential of this cell line towards the long-term protection against murine visceral leishmaniasis. This model shows an organ-dependent evolution of the disease. The infection can resolve in the liver but chronically affect spleen and bone marrow. Twelve weeks after subcutaneous administration of attenuated L. infantum, Bagg Albino (BALB/c) mice were challenged with infective L. infantum parasites expressing the luciferase-encoding gene. Combining in vivo bioimaging techniques with limiting dilution experiments, we report that, in the initial phase of the disease, vaccinated animals presented lower parasite loads than unvaccinated animals. A reduction of the severity of liver damage was also detected. Protection was associated with the induction of rapid parasite-specific IFN-γ production by CD4+ and CD8+ T cells. However, the vaccine was unable to control the chronic phase of the disease, since we did not find differences in the parasite burdens nor in the immune response at that time point.

5.
Transl Res ; 200: 1-17, 2018 10.
Article in English | MEDLINE | ID: mdl-30053382

ABSTRACT

Adjuvant chemotherapy for solid tumors based on platinum-derived compounds such as cisplatin is the treatment of choice in most cases. Cisplatin triggers signaling pathways that lead to cell death, but it also induces changes in tumor cells that modify the therapeutic response, thereby leading to cisplatin resistance. We have recently reported that microRNA-7 is silenced by DNA methylation and is involved in the resistance to platinum in cancer cells through the action of the musculoaponeurotic fibrosarcoma oncogene family, protein G (MAFG). In the present study, we first confirm the miR-7 epigenetic regulation of MAFG in 44 normal- and/or tumor-paired samples in non-small-cell lung cancer (NSCLC). We also provide translational evidence of the role of MAFG and the clinical outcome in NSCLC by the interrogation of two extensive in silico databases of 2019 patients. Moreover, we propose that MAFG-mediated resistance could be conferred due to lower reactive oxygen species production after cisplatin exposure. We developed specifically selected aptamers against MAFG, with high sensitivity to detect the protein at a nuclear level probed by aptacytochemistry and histochemistry analyses. The inhibition of MAFG activity through the action of the specific aptamer apMAFG6F increased the levels of reactive oxygen species production and the sensitivity to cisplatin. We report first the specific nuclear identification of MAFG as a novel detection method for diagnosis in NSCLC, and then we report that MAFG modulates the redox response and confers cell protection against free radicals generated after platinum administration, thus also being a promising therapeutic target.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Cisplatin/therapeutic use , Drug Resistance, Neoplasm/drug effects , Lung Neoplasms/drug therapy , MafG Transcription Factor/antagonists & inhibitors , Repressor Proteins/antagonists & inhibitors , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/genetics , Aptamers, Nucleotide/pharmacology , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Cloning, Molecular , DNA Methylation , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/physiology , Epigenesis, Genetic/genetics , Gene Expression , Gene Silencing , HEK293 Cells , Humans , Lung Neoplasms/genetics , MafG Transcription Factor/genetics , MafG Transcription Factor/physiology , MicroRNAs/genetics , MicroRNAs/physiology , Oxidation-Reduction , Prognosis , Reactive Oxygen Species/metabolism , Repressor Proteins/genetics , Repressor Proteins/physiology , Sequence Analysis, DNA , Transfection
6.
Mol Ther ; 26(8): 2047-2059, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29910175

ABSTRACT

Since Toll-like receptor 4 (TLR4) mediates brain damage after stroke, development of TLR4 antagonists is a promising therapeutic strategy for this disease. Our aim was to generate TLR4-blocking DNA aptamers to be used for stroke treatment. From a random oligonucleotide pool, we identified two aptamers (ApTLR#1R, ApTLR#4F) with high affinity for human TLR4 by systematic evolution of ligands by exponential enrichment (SELEX). Optimized truncated forms (ApTLR#1RT, ApTLR#4FT) were obtained. Our data demonstrate specific binding of both aptamers to human TLR4 as well as a TLR4 antagonistic effect. ApTLR#4F and ApTLR#4FT showed a long-lasting protective effect against brain injury induced by middle cerebral artery occlusion (MCAO), an effect that was absent in TLR4-deficient mice. Similar effects were obtained in other MCAO models, including in rat. Additionally, efficacy of ApTLR#4FT in a model of brain ischemia-reperfusion in rat supports the use of this aptamer in patients undergoing artery recanalization induced by pharmacological or mechanical interventions. The absence of major toxicology aspects and the good safety profile of the aptamers further encourage their future clinical positioning for stroke therapy and possibly other diseases in which TLR4 plays a deleterious role.


Subject(s)
Aptamers, Nucleotide/administration & dosage , Infarction, Middle Cerebral Artery/drug therapy , Stroke/prevention & control , Toll-Like Receptor 4/metabolism , Animals , Aptamers, Nucleotide/pharmacology , Disease Models, Animal , Humans , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/etiology , Mice , Rats , SELEX Aptamer Technique , Signal Transduction , Stroke/genetics , Stroke/metabolism
7.
Oncotarget ; 9(17): 13501-13516, 2018 Mar 02.
Article in English | MEDLINE | ID: mdl-29568373

ABSTRACT

MAP kinase interacting kinases (MNKs) modulate the function of oncogene eukaryotic initiation factor 4E (eIF4E) through phosphorylation, which is necessary for oncogenic transformation. MNK1 gives rise to two mRNAs and thus two MNK1 isoforms, named MNK1a and MNK1b. MNK1b, the splice variant of human MNK1a, is constitutively active and independent of upstream MAP kinases. In this study, we have analyzed the expression of both MNK1 isoforms in 69 breast tumor samples and its association with clinicopathologic/prognostic characteristics of breast cancer. MNK1a and MNK1b expression was significantly increased in tumors relative to the corresponding adjacent normal tissue (p < 0.001). In addition, MNK1b overexpression was found in most of the triple-negative tumors and was associated with a shorter overall and disease-free survival time. Overexpression of MNK1b in MDA-MB-231 cells induced an increase in the expression of the MCL1 antiapoptotic protein and promoted proliferation, invasion and colony formation. In conclusion, a high expression level of MNK1b protein could be used as a marker of poor prognosis in breast cancer patients and it could be a therapeutic target in triple-negative tumors.

8.
Am Heart J ; 184: 121-132, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28224926

ABSTRACT

BACKGROUND: Cardiovascular disease (CVD) is the leading cause of death worldwide. With atherosclerosis as the underlying cause for many CVD events, prevention or reduction of subclinical atherosclerotic plaque burden (SAPB) through a healthier lifestyle may have substantial public health benefits. OBJECTIVE: The objective was to describe the protocol of a randomized controlled trial investigating the effectiveness of a 30-month worksite-based lifestyle program aimed to promote cardiovascular health in participants having a high or a low degree of SAPB compared with standard care. METHODS: We will conduct a randomized controlled trial including middle-aged bank employees from the Progression of Early Subclinical Atherosclerosis cohort, stratified by SAPB (high SAPB n=260, low SAPB n=590). Within each stratum, participants will be randomized 1:1 to receive a lifestyle program or standard care. The program consists of 3 elements: (a) 12 personalized lifestyle counseling sessions using Motivational Interviewing over a 30-month period, (b) a wrist-worn physical activity tracker, and (c) a sit-stand workstation. Primary outcome measure is a composite score of blood pressure, physical activity, sedentary time, body weight, diet, and smoking (ie, adapted Fuster-BEWAT score) measured at baseline and at 1-, 2-, and 3-year follow-up. CONCLUSIONS: The study will provide insights into the effectiveness of a 30-month worksite-based lifestyle program to promote cardiovascular health compared with standard care in participants with a high or low degree of SAPB.


Subject(s)
Atherosclerosis/prevention & control , Cardiovascular Diseases/prevention & control , Fitness Trackers , Health Promotion/methods , Motivational Interviewing , Occupational Health Services/methods , Risk Reduction Behavior , Adult , Blood Pressure , Body Weight , Diet , Exercise , Female , Humans , Life Style , Male , Middle Aged , Posture , Sedentary Behavior , Smoking , Smoking Cessation , Treatment Outcome , Workplace
9.
Biomarkers ; 22(2): 133-144, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27781498

ABSTRACT

OBJECTIVE: Our purpose was to study the molecular basis of infliximab (IFX) effect on colon mucosa in a colitis model and to identify new biomarkers of mucosal healing. METHODS: Healthy rats and rats which were subjected to experimental colitis induced by dextran sulfate sodium, with or without IFX treatment (in the short- and long-term), were studied along with forty-seven IBD patients. Colon mucosal integrity by periodic acid Schiff (PAS) staining, intestinal damage by immunohistochemistry (proliferating cell nuclear antigen, ß-catenin, E-cadherin, phosphotyrosine, p-p38, allograft inflammatory factor-1 (AIF-1) and colonic mucosal apoptosis by TUNEL staining were evaluated in rats while serum and colon AIF-1 levels were determined in IBD patients. RESULTS: In rats with colitis, IFX reestablished the epithelial barrier integrity, recovered mucus production and decreased colon inflammation, as verified by reduced serum and colon AIF-1 levels; colon and serum AIF-1 levels were also lower in inactive IBD patients compare to active ones. P38 activation after IFX treatment tended to induce differentiation/proliferation of epithelial cells along the colonic crypt-villous axis. CONCLUSIONS: These findings support AIF-1 as a new biomarker of mucosal healing in experimental colitis and suggest that p38 activation is involved in the mucosal healing intracellular mechanism induced by IFX treatment.


Subject(s)
Calcium-Binding Proteins/blood , Inflammatory Bowel Diseases/drug therapy , Infliximab/therapeutic use , Intestinal Mucosa/drug effects , Microfilament Proteins/blood , Animals , Biomarkers/analysis , Calcium-Binding Proteins/drug effects , Colitis/chemically induced , Colitis/drug therapy , DNA-Binding Proteins/blood , DNA-Binding Proteins/drug effects , Disease Models, Animal , Enzyme Activation/drug effects , Epithelial Cells/cytology , Epithelial Cells/drug effects , Humans , Inflammatory Bowel Diseases/blood , Infliximab/pharmacology , Intestinal Mucosa/chemistry , Microfilament Proteins/drug effects , Rats , p38 Mitogen-Activated Protein Kinases/metabolism
10.
Neurosci Lett ; 558: 143-8, 2014 Jan 13.
Article in English | MEDLINE | ID: mdl-24269372

ABSTRACT

Neonatal hypoxic-ischemic encephalopathy (HIE) causes high mortality and long-term morbidity rates. The magnitude of the neuronal damage depends on the duration and severity of the initial insult combined with the deleterious effects of reperfusion and apoptosis. Currently, a diagnosis of HIE is based largely on the neurological and histological findings. Therefore, the aim of this study was to identify apoptosis-related proteins that might serve as potential markers of HIE injury. As an initial step toward reaching this objective, we analyzed changes in protein levels in an in vitro model of hypoxia using antibody arrays, and we have identified changes in the expression level of two proteins involved in apoptosis, Smac-DIABLO and cathepsin D. We obtained brain sections from eight neonatal HIE patients and performed histological staining, TUNEL assays and Smac-DIABLO and cathepsin D immunolocalization. Our results revealed a high number of TUNEL-positive cells, including neurons, astrocytes and ependymal cells, in the various regions that were analyzed. Interestingly, many of the areas that were positive for TUNEL staining did not appear to be damaged in the histological evaluation. In addition, using immunostaining, we found that Smac-DIABLO and cathepsin D had the same regional distribution pattern. Taken together, these findings indicate that these two proteins could serve as markers to identify injured regions that might not to be detectable using histological observations alone.


Subject(s)
Apoptosis , Cathepsin D/metabolism , Hypoxia-Ischemia, Brain/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Mitochondrial Proteins/metabolism , Animals , Apoptosis Regulatory Proteins , Biomarkers/metabolism , Brain/metabolism , Carrier Proteins/metabolism , Cell Hypoxia , Female , Humans , Infant , Infant, Newborn , Male , PC12 Cells , Rats
11.
J Histochem Cytochem ; 57(5): 503-12, 2009 May.
Article in English | MEDLINE | ID: mdl-19188486

ABSTRACT

Increased protein synthesis is regulated, in part, by two eukaryotic translation initiation factors (eIFs): eIF4E and eIF2alpha. One or both of these factors are often overexpressed in several types of cancer cells; however, no data are available at present regarding eIF4E and eIF2alpha levels in brain tumors. In this study, we analyzed the expression, subcellular localization and phosphorylation states of eIF4E and eIF2alpha in 64 brain tumors (26 meningiomas, 16 oligodendroglial tumors, and 22 astrocytomas) and investigated the correlation with the expression of MIB-1, p53, and cyclin D1 proteins as well. There are significant differences in the phosphorylated eIF4E levels between the tumors studied, being the highest in meningiomas and the lowest in the oligodendroglial tumors. Relative to subcellular localization, eIF4E is frequently found in the nucleus of the oligodendroglial tumors and rarely in the same compartment of the meningiomas, whereas eIF2alpha showed an inverse pattern. Finally, cyclin D1 levels directly correlate with the phosphorylation status of both factors. The different expression, phosphorylation, or/and subcellular distribution of eIF2alpha and eIF4E within the brain types of tumors studied could indicate that different pathways are activated for promoting cell cycle proliferation, for instance, leading to increased cyclin D1 expression.


Subject(s)
Brain Neoplasms/metabolism , Eukaryotic Initiation Factor-2/metabolism , Eukaryotic Initiation Factor-4E/metabolism , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/metabolism , Brain Neoplasms/pathology , Cell Proliferation , Cyclin D1/metabolism , Female , Humans , Ki-67 Antigen/metabolism , Male , Middle Aged , Phosphorylation , Tumor Suppressor Protein p53/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...