Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Environ Sci Process Impacts ; 26(5): 802-813, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38329100

ABSTRACT

In this work, multispectral imaging (MSI) is introduced as an innovative, practical, and non-invasive solution capable of identifying and detecting (micro)plastics. MSI holds significant appeal for industry due to its flexibility, ease of implementation, and portability. The integration of MSI with Principal Components Analysis (PCA) enables precise identification of different plastics and differentiation of microplastics within mixtures. The technique successfully identifies and quantifies the pure spectral response (endmembers) of each microplastic in every pixel of the original image. As a result, the model excels in distinguishing specific plastic materials from their surrounding backgrounds. This novel approach facilitates the identification of randomly dispersed microplastics in water.


Subject(s)
Environmental Monitoring , Microplastics , Plastics , Principal Component Analysis , Water Pollutants, Chemical , Plastics/analysis , Environmental Monitoring/methods , Microplastics/analysis , Water Pollutants, Chemical/analysis
2.
ACS Appl Mater Interfaces ; 16(3): 4271-4282, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38194671

ABSTRACT

Controlled splitting of liquid droplets is a key function in many microfluidic applications. In recent years, various methodologies have been used to accomplish this task. Here, we present an optofluidic technique based on an engineered surface formed by coating a z-cut iron-doped lithium niobate crystal with a lubricant-infused layer, which provides a very slippery surface. Illuminating the crystal with a light spot induces surface charges of opposite signs on the two crystal faces because of the photovoltaic effect. If the light spot is sufficiently intense, millimetric water droplets placed near the illuminated spot split into two charged fragments, one fragment being trapped by the bright spot and the other moving away from it. The latter fragment does not move randomly but rather follows one of three well-defined trajectories separated by 120°, which reflect the anisotropic crystalline structure of Fe:LiNbO3. Numerical simulations explain the behavior of water droplets in the framework of the forces induced by the interplay of pyroelectric, piezoelectric, and photovoltaic effects, which originate simultaneously inside the illuminated crystal. Such a synergetic effect can provide a valuable feature in applications that require splitting and coalescence of droplets, such as chemical microreactors and biological encapsulation and screening.

3.
Opt Express ; 31(17): 28423-28436, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37710896

ABSTRACT

This work presents a reconfigurable opto-microfluidic coupling between optical waveguides and tilted microfluidic channels in monolithic lithium niobate crystal. The light path connecting two waveguide arrays located on opposite sides of a microfluidic channel depends on the refractive index between the liquid phase and the hosting crystal. As a result, the optical properties of the flowing fluid, which is pumped into the microfluidic channel on demand, can be exploited to control the light pathways inside the optofluidic device. Proof-of-concept applications are herein presented, including microfluidic optical waveguide switching, optical refractive index sensing, and wavelength demultiplexing.

4.
Micromachines (Basel) ; 13(2)2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35208440

ABSTRACT

The actuation of droplets on a surface is extremely relevant for microfluidic applications. In recent years, various methodologies have been used. A promising solution relies on iron-doped lithium niobate crystals that, when illuminated, generate an evanescent electric field in the surrounding space due to the photovoltaic effect. This field can be successfully exploited to control the motion of water droplets. Here, we present an experimental method to determine the attractive force exerted by the evanescent field. It consists of the analysis of the elongation of a pendant droplet and its detachment from the suspending syringe needle, caused by the illumination of an iron-doped lithium niobate crystal. We show that this interaction resembles that obtained by applying a voltage between the needle and a metallic substrate, and a quantitative investigation of these two types of actuation yields similar results. Pendant droplet tensiometry is then demonstrated to offer a simple solution for quickly mapping out the force at different distances from the crystal, generated by the photovoltaic effect and its temporal evolution, providing important quantitative data for the design and characterization of optofluidic devices based on lithium niobate crystals.

5.
Sensors (Basel) ; 22(3)2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35161887

ABSTRACT

This paper deals with the quantification of proteins by implementing the Bradford protein assay method in a portable opto-microfluidic platform for protein concentrations lower than 1.4 mg/mL. Absorbance is measured by way of optical waveguides integrated to a cross-junction microfluidic circuit on a single lithium niobate substrate. A new protocol is proposed to perform the protein quantification based on the high correlation of the light absorbance at 595 nm, as commonly used in the Bradford method, with the one achieved at 633 nm with a cheap commercially available diode laser. This protocol demonstrates the possibility to quantify proteins by using nL volumes, 1000 times less than the standard technique such as paper-analytical devices. Moreover, it shows a limit of quantification of at least 0.12 mg/mL, which is four times lower than the last literature, as well as a better accuracy (98%). The protein quantification is obtained either by using one single microfluidic droplet as well by performing statistical analysis over ensembles of several thousands of droplets in less than 1 min. The proposed methodology presents the further advantage that the protein solutions can be reused for other investigations and the same pertains to the opto-microfluidic platform.


Subject(s)
Microfluidic Analytical Techniques , Microfluidics , Biological Assay , Lab-On-A-Chip Devices , Niobium , Oxides
6.
ACS Appl Mater Interfaces ; 13(37): 44520-44530, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34516100

ABSTRACT

The adverse effects of NOx (NO + NO2) gases on the environment and human health have triggered the development of sustainable photocatalysts for their efficient removal (De-NOx). In this regard, the present work focuses on supported Co3O4-based nanomaterials fabricated via chemical vapor deposition (CVD), assessed for the first time as photocatalysts for sunlight-activated NO oxidation. A proof-of-principle investigation on the possibility of tailoring material performances by heterostructure formation is explored through deposition of SnO2 or Fe2O3 onto Co3O4 by radio frequency (RF) sputtering. A comprehensive characterization by complementary analytical tools evidences the formation of high-purity columnar Co3O4 arrays with faceted pyramidal tips, conformally covered by very thin SnO2 and Fe2O3 overlayers. Photocatalytic functional tests highlight an appreciable activity for bare Co3O4 systems, accompanied by a high selectivity in NOx conversion to harmless nitrate species. A preliminary evaluation of De-NOx performances for functionalized systems revealed a direct dependence of the system behavior on the chemical composition, SnO2/Fe2O3 overlayer morphology, and charge transfer events between the single oxide constituents. Taken together, the present results can provide valuable guidelines for the eventual implementation of improved photocatalysts for air purification.

7.
Sensors (Basel) ; 20(18)2020 Sep 19.
Article in English | MEDLINE | ID: mdl-32961673

ABSTRACT

The aim of Lab-on-a-chip systems is the downscaling of analytical protocols into microfluidic devices, including optical measurements. In this context, the growing interest of the scientific community in opto-microfluidic devices has fueled the development of new materials. Recently, lithium niobate has been presented as a promising material for this scope, thanks to its remarkable optical and physicochemical properties. Here, we present a novel microfluidic device realized starting from a lithium niobate crystal, combining engraved microfluidic channels with integrated and self-aligned optical waveguides. Notably, the proposed microfabrication strategy does not compromise the optical coupling between the waveguides and the microchannel, allowing one to measure the transmitted light through the liquid flowing in the channel. In addition, the device shows a high versatility in terms of the optical properties of the light source, such as wavelength and polarization. Finally, the developed opto-microfluidic system is successfully validated as a probe for real-time pH monitoring of the liquid flowing inside the microchannel, showing a high integrability and fast response.

8.
Nanomaterials (Basel) ; 10(7)2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32650613

ABSTRACT

MnO2 nanostructures were fabricated by plasma assisted-chemical vapor deposition (PA-CVD) using a fluorinated diketonate diamine manganese complex, acting as single-source precursor for both Mn and F. The syntheses were performed from Ar/O2 plasmas on MgAl2O4(100), YAlO3(010), and Y3Al5O12(100) single crystals at a growth temperature of 300 °C, in order to investigate the substrate influence on material chemico-physical properties. A detailed characterization through complementary analytical techniques highlighted the formation of highly pure and oriented F-doped systems, comprising the sole ß-MnO2 polymorph and exhibiting an inherent oxygen deficiency. Optical absorption spectroscopy revealed the presence of an appreciable Vis-light harvesting, of interest in view of possible photocatalytic applications in pollutant degradation and hydrogen production. The used substrates directly affected the system structural features, as well as the resulting magnetic characteristics. In particular, magnetic force microscopy (MFM) measurements, sensitive to the out-of-plane magnetization component, highlighted the formation of spin domains and long-range magnetic ordering in the developed materials, with features dependent on the system morphology. These results open the door to future engineering of the present nanostructures as possible magnetic media for integration in data storage devices.

9.
Nanomaterials (Basel) ; 10(3)2020 Mar 11.
Article in English | MEDLINE | ID: mdl-32168937

ABSTRACT

Among oxide semiconductors, p-type Mn3O4 systems have been exploited in chemo-resistive sensors for various analytes, but their use in the detection of H2, an important, though flammable, energy vector, has been scarcely investigated. Herein, we report for the first time on the plasma assisted-chemical vapor deposition (PA-CVD) of Mn3O4 nanomaterials, and on their on-top functionalization with Ag and SnO2 by radio frequency (RF)-sputtering, followed by air annealing. The obtained Mn3O4-Ag and Mn3O4-SnO2 nanocomposites were characterized by the occurrence of phase-pure tetragonal α-Mn3O4 (hausmannite) and a controlled Ag and SnO2 dispersion. The system functional properties were tested towards H2 sensing, yielding detection limits of 18 and 11 ppm for Mn3O4-Ag and Mn3O4-SnO2 specimens, three orders of magnitude lower than the H2 explosion threshold. These performances were accompanied by responses up to 25% to 500 ppm H2 at 200 °C, superior to bare Mn3O4, and good selectivity against CH4 and CO2 as potential interferents. A rationale for the observed behavior, based upon the concurrence of built-in Schottky (Mn3O4/Ag) and p-n junctions (Mn3O4/SnO2), and of a direct chemical interplay between the system components, is proposed to discuss the observed activity enhancement, which paves the way to the development of gas monitoring equipments for safety end-uses.

10.
ACS Appl Mater Interfaces ; 11(26): 23692-23700, 2019 Jul 03.
Article in English | MEDLINE | ID: mdl-31252461

ABSTRACT

The efficient detection of chemical warfare agents (CWAs), putting at stake human life and global safety, is of paramount importance in the development of reliable sensing devices for safety applications. Herein, we present the fabrication of Mn3O4-based nanocomposites containing noble metal particles for the gas-phase detection of a simulant of vesicant nitrogen mustard, i.e., di(propylene glycol) monomethyl ether (DPGME). The target materials were fabricated by chemical vapor deposition of manganese oxide on Al2O3 substrates and subsequent functionalization with silver or gold via radio frequency sputtering. The obtained high purity composites, characterized by an intimate metal/oxide contact, yielded an outstanding efficiency in the detection of DPGME. In particular, sensing of the latter analyte with an ultralow detection limit of 0.6 ppb could be performed selectively with respect to other CWA simulants. In addition, the tuneability of selectivity patterns as a function of metal nanoparticle nature paves the way to the development of efficient and selective devices for practical end uses.

11.
ACS Appl Mater Interfaces ; 11(17): 15881-15890, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30998315

ABSTRACT

We report on a combined chemical vapor deposition (CVD)/radio frequency (RF) sputtering synthetic strategy for the controlled surface modification of ZnO nanostructures by Ti-containing species. Specifically, the proposed approach consists in the CVD of grown-on-tip ZnO nanopyramids, followed by titanium RF sputtering under mild conditions. The results obtained by a thorough characterization demonstrate the successful ZnO surface functionalization with dispersed Ti-containing species in low amounts. This phenomenon, in turn, yields a remarkable enhancement of photoactivated superhydrophilic behavior, self-cleaning ability, and photocatalytic performances in comparison to bare ZnO. The reasons accounting for such an improvement are unravelled by a multitechnique analysis, elucidating the interplay between material chemico-physical properties and the corresponding functional behavior. Overall, the proposed strategy stands as an amenable tool for the mastering of semiconductor-based functional nanoarchitectures through ad hoc engineering of the system surface.

12.
Langmuir ; 34(15): 4568-4574, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29624397

ABSTRACT

Photoreforming promoted by metal oxide nanophotocatalysts is an attractive route for clean and sustainable hydrogen generation. In the present work, we propose for the first time the use of supported Mn3O4 nanosystems, both pure and functionalized with Au nanoparticles (NPs), for hydrogen generation by photoreforming. The target oxide systems, prepared by chemical vapor deposition (CVD) and decorated with gold NPs by radio frequency (RF) sputtering, were subjected to a thorough chemico-physical characterization and utilized for a proof-of-concept H2 generation in aqueous ethanolic solutions under simulated solar illumination. Pure Mn3O4 nanosystems yielded a constant hydrogen production rate of 10 mmol h-1 m-2 even for irradiation times up to 20 h. The introduction of Au NPs yielded a significant enhancement in photocatalytic activity, which decreased as a function of irradiation time. The main phenomena causing the Au-containing photocatalyst deactivation have been investigated by morphological and compositional analysis, providing important insights for the design of Mn3O4-based photocatalysts with improved performances.

13.
ACS Appl Mater Interfaces ; 10(15): 12305-12310, 2018 Apr 18.
Article in English | MEDLINE | ID: mdl-29620350

ABSTRACT

The detection of poisonous chemicals and warfare agents, such as acetonitrile and dimethyl methylphosphonate, is of utmost importance for environmental/health protection and public security. In this regard, supported Mn3O4 nanosystems were fabricated by vapor deposition on Al2O3 substrates, and their structure/morphology were characterized as a function of the used growth atmosphere (dry vs. wet O2). Thanks to the high surface and peculiar nano-organization, the target systems displayed attractive functional properties, unprecedented for similar p-type systems, in the detection of the above chemical species. Their good responses, selectivity, and sensitivity pave the way to the fabrication of low-cost and secure sensors for different harmful analytes.

14.
Materials (Basel) ; 11(3)2018 Mar 14.
Article in English | MEDLINE | ID: mdl-29538338

ABSTRACT

Sub-monolayers of monodisperse Au colloids with different surface coverage have been embedded in between two different metal oxide thin films, combining sol-gel depositions and proper substrates functionalization processes. The synthetized films were TiO2, ZnO, and NiO. X-ray diffraction shows the crystallinity of all the oxides and verifies the nominal surface coverage of Au colloids. The surface plasmon resonance (SPR) of the metal nanoparticles is affected by both bottom and top oxides: in fact, the SPR peak of Au that is sandwiched between two different oxides is centered between the SPR frequencies of Au sub-monolayers covered with only one oxide, suggesting that Au colloids effectively lay in between the two oxide layers. The desired organization of Au nanoparticles and the morphological structure of the prepared multi-layered structures has been confirmed by Rutherford backscattering spectrometry (RBS), Secondary Ion Mass Spectrometry (SIMS), and Scanning Electron Microscopy (SEM) analyses that show a high quality sandwich structure. The multi-layered structures have been also tested as optical gas sensors.

15.
Appl Opt ; 55(24): 6559-63, 2016 Aug 20.
Article in English | MEDLINE | ID: mdl-27556972

ABSTRACT

Photorefractive-damage- (PRD) resistant zirconium-oxide-doped lithium niobate is investigated as a substrate for the realization of annealed proton-exchanged (APE) waveguides. Its advantages are a favorable distribution coefficient, PRD resistance comparable to magnesium-oxide-doped lithium niobate, and a proton-diffusion behavior resembling congruent lithium niobate. A 1D model for APE waveguides was developed based on a previous model for congruently melting lithium niobate. Evidence for a nonlinear index dependence on concentration was found.

16.
Environ Sci Pollut Res Int ; 23(20): 20350-20359, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27449018

ABSTRACT

Supported Fe2O3/WO3 nanocomposites were fabricated by an original vapor phase approach, involving the chemical vapor deposition (CVD) of Fe2O3 on Ti sheets and the subsequent radio frequency (RF)-sputtering of WO3. Particular attention was dedicated to the control of the W/Fe ratio, in order to tailor the composition of the resulting materials. The target systems were analyzed by the joint use of complementary techniques, that is, X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), energy dispersive X-ray spectroscopy (EDXS), X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS), and optical absorption spectroscopy. The results showed the uniform decoration of α-Fe2O3 (hematite) globular particles by tiny WO3 aggregates, whose content could be controlled by modulations of the sole sputtering time. The photocatalytic degradation of phenol in the liquid phase was selected as a test reaction for a preliminary investigation of the system behavior in wastewater treatment applications. The system activity under both UV and Vis light illumination may open doors for further material optimization in view of real-world end-uses.


Subject(s)
Ferric Compounds/chemistry , Nanocomposites/chemistry , Oxides/chemistry , Phenol/chemistry , Polymers/chemical synthesis , Tungsten/chemistry , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Polymers/chemistry , Ultraviolet Rays , X-Ray Diffraction
17.
ACS Appl Mater Interfaces ; 7(16): 8667-76, 2015 Apr 29.
Article in English | MEDLINE | ID: mdl-25853179

ABSTRACT

Harvesting radiant energy to trigger water photoelectrolysis and produce clean hydrogen is receiving increasing attention in the search of alternative energy resources. In this regard, hematite (α-Fe2O3) nanostructures with controlled nano-organization have been fabricated and investigated for use as anodes in photoelectrochemical (PEC) cells. The target systems have been grown on conductive substrates by plasma enhanced-chemical vapor deposition (PE-CVD) and subjected to eventual ex situ annealing in air to further tailor their structure and properties. A detailed multitechnique approach has enabled to elucidate the interrelations between system characteristics and the generated photocurrent. The present α-Fe2O3 systems are characterized by a high purity and hierarchical morphologies consisting of nanopyramids/organized dendrites, offering a high contact area with the electrolyte. PEC data reveal a dramatic response enhancement upon thermal treatment, related to a more efficient electron transfer. The reasons underlying such a phenomenon are elucidated and discussed by transient absorption spectroscopy (TAS) studies of photogenerated charge carrier kinetics, investigated on different time scales for the first time on PE-CVD Fe2O3 nanostructures.

18.
Chemphyschem ; 13(17): 3798-801, 2012 Dec 07.
Article in English | MEDLINE | ID: mdl-23097215

ABSTRACT

The other polymorph: A vapor-phase route for the fabrication of ß-Fe(2)O(3) nanomaterials on Ti substrates at 400-500 °C is reported. For the first time, the ß polymorph is tested as anode for lithium batteries, exhibiting promising performances in terms of Li storage and rate capability.


Subject(s)
Electric Power Supplies , Ferric Compounds/chemistry , Gases/chemistry , Lithium/chemistry , Nanostructures/chemistry , Electrodes , Ions/chemistry
19.
Chemphyschem ; 13(9): 2342-8, 2012 Jun 18.
Article in English | MEDLINE | ID: mdl-22532392

ABSTRACT

CuO/ZnO nanocomposites were synthesized on Al(2)O(3) substrates by a hybrid plasma-assisted approach, combining the initial growth of ZnO columnar arrays by plasma-enhanced chemical vapor deposition (PE-CVD) and subsequent radio frequency (RF) sputtering of copper, followed by final annealing in air. Chemical, morphological, and structural analyses revealed the formation of high-purity nanosystems, characterized by a controllable dispersion of CuO particles into ZnO matrices. The high surface-to-volume ratio of the obtained materials, along with intimate CuO/ZnO intermixing, resulted in the efficient detection of various oxidizing and reducing gases (such as O(3), CH(3)CH(2)OH, and H(2)). The obtained data are critically discussed and interrelated with the chemical and physical properties of the nanocomposites.

20.
Nanotechnology ; 23(2): 025502, 2012 Jan 20.
Article in English | MEDLINE | ID: mdl-22166305

ABSTRACT

Ag/ZnO nanocomposites supported on polycrystalline Al2O3 were synthesized by an unprecedented approach combining plasma enhanced chemical vapor deposition (PE-CVD) of ZnO matrices and the subsequent deposition of Ag nanoparticles (NPs) by radio frequency (RF) sputtering. The system structure, composition and morphology were investigated by glancing incidence x-ray diffraction (GIXRD), secondary ion mass spectrometry (SIMS), field emission scanning electron microscopy (FE-SEM) and energy dispersive x-ray spectroscopy (EDXS). A tailored dispersion and distribution of silver particles could be obtained under mild conditions by the sole variation of the sputtering time. Gas sensing properties toward flammable and toxic gases, both reducing (CH3CH2OH, CH3COCH3) and oxidizing (O3), were investigated in the temperature range 100-400 °C. Beside the high sensitivity, the developed sensors exhibited a response proportional to Ag content, thanks to catalytic and electronic effects promoted by silver NPs. In addition, discrimination between oxidizing and reducing analytes was enabled by a suitable choice of the adopted working temperature.


Subject(s)
Gases/analysis , Nanostructures/chemistry , Silver/chemistry , Zinc Oxide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...