Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 11(31): 28088-28095, 2019 Aug 07.
Article in English | MEDLINE | ID: mdl-31309839

ABSTRACT

Large area (>20 cm × 2 cm)-oriented thin films of PQT-C12 with varying molecular weight and polydispersity index (PDI) were fabricated by the ribbon-shaped floating film transfer method aiming toward their application as an active semiconductor element of organic field effect transistors (OFETs). Investigation on the influence of the molecular weight and PDI upon the extent of molecular alignment and anisotropic charge transport was systematically carried out. It has been demonstrated that high molecular weight in combination with low PDI not only leads to a very high optical anisotropy >10 but also high charge carrier anisotropy with a hole mobility of about 0.07 cm2/V·s for OFETs using parallel-oriented PQT-C12 thin films. Such a structure-property correlation is highly beneficial for the development of high performance organic electronic devices by synergistic and amicable tuning of the optoelectronic anisotropies and polymer synthetic variables.

2.
Materials (Basel) ; 10(7)2017 Jul 18.
Article in English | MEDLINE | ID: mdl-28773182

ABSTRACT

Three-component organic/inorganic hybrid films were fabricated by drop-casting the mixed dispersion of nanodispersed-poly(nickel 1,1,2,2-ethenetetrathiolate) (nano-PETT), polyimide (PI) and super growth carbon nanotubes (SG-CNTs) in N-methylpyrrolidone (NMP) at the designed ratio on a substrate. The dried nano-PETT/PI/SG-CNT hybrid films were prepared by the stepwise cleaning of NMP and methanol, and were dried once more. The thermoelectric properties of Seebeck coefficient S and electrical conductivity σ were measured by a thin-film thermoelectric measurement system ADVANCE RIKO ZEM-3M8 at 330-380 K. The electrical conductivity of nano-PETT/PI/SG-CNT hybrid films increased by 1.9 times for solvent treatment by clearing insulated of polymer. In addition, the density of nano-PETT/PI/SG-CNT hybrid films decreased 1.31 to 0.85 g·cm-3 with a decrease in thermal conductivity from 0.18 to 0.12 W·m-1·K-1. To evaluate the thermostability of nano-PETT/PI/SG-CNT hybrid films, the samples were kept at high temperature and the temporal change of thermoelectric properties was measured. The nano-PETT/PI/SG-CNT hybrid films were rather stable at 353 K and kept their power factor even after 4 weeks.

SELECTION OF CITATIONS
SEARCH DETAIL
...