Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biology (Basel) ; 13(3)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38534427

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative condition that predominantly affects the hippocampus and the entorhinal complex, leading to memory lapse and cognitive impairment. This can have a negative impact on an individual's behavior, speech, and ability to navigate their surroundings. AD is one of the principal causes of dementia. One of the most accepted theories in AD, the amyloid ß (Aß) hypothesis, assumes that the buildup of the peptide Aß is the root cause of AD. Impaired insulin signaling in the periphery and central nervous system has been considered to have an effect on the pathophysiology of AD. Further, researchers have shifted their focus to epigenetic mechanisms that are responsible for dysregulating major biochemical pathways and intracellular signaling processes responsible for directly or indirectly causing AD. The prime epigenetic mechanisms encompass DNA methylation, histone modifications, and non-coding RNA, and are majorly responsible for impairing insulin signaling both centrally and peripherally, thus leading to AD. In this review, we provide insights into the major epigenetic mechanisms involved in causing AD, such as DNA methylation and histone deacetylation. We decipher how the mechanisms alter peripheral insulin signaling and brain insulin signaling, leading to AD pathophysiology. In addition, this review also discusses the need for newer drug delivery systems for the targeted delivery of epigenetic drugs and explores targeted drug delivery systems such as nanoparticles, vesicular systems, networks, and other nano formulations in AD. Further, this review also sheds light on the future approaches used for epigenetic drug delivery.

2.
J Nanobiotechnology ; 21(1): 414, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37946240

ABSTRACT

Tuberculosis (TB) remains a significant global health challenge, necessitating innovative approaches for effective treatment. Conventional TB therapy encounters several limitations, including extended treatment duration, drug resistance, patient noncompliance, poor bioavailability, and suboptimal targeting. Advanced drug delivery strategies have emerged as a promising approach to address these challenges. They have the potential to enhance therapeutic outcomes and improve TB patient compliance by providing benefits such as multiple drug encapsulation, sustained release, targeted delivery, reduced dosing frequency, and minimal side effects. This review examines the current landscape of drug delivery strategies for effective TB management, specifically highlighting lipid nanoparticles, polymer nanoparticles, inorganic nanoparticles, emulsion-based systems, carbon nanotubes, graphene, and hydrogels as promising approaches. Furthermore, emerging therapeutic strategies like targeted therapy, long-acting therapeutics, extrapulmonary therapy, phototherapy, and immunotherapy are emphasized. The review also discusses the future trajectory and challenges of developing drug delivery systems for TB. In conclusion, nanomedicine has made substantial progress in addressing the challenges posed by conventional TB drugs. Moreover, by harnessing the unique targeting abilities, extended duration of action, and specificity of advanced therapeutics, innovative solutions are offered that have the potential to revolutionize TB therapy, thereby enhancing treatment outcomes and patient compliance.


Subject(s)
Mycobacterium tuberculosis , Nanotubes, Carbon , Tuberculosis , Humans , Antitubercular Agents/therapeutic use , Antitubercular Agents/pharmacology , Drug Delivery Systems , Tuberculosis/drug therapy , Nanomedicine
3.
Curr Top Med Chem ; 22(23): 1909-1929, 2022.
Article in English | MEDLINE | ID: mdl-35043757

ABSTRACT

Bacopa monnieri (BM) is of immense therapeutic potential in today's world. This review is aimed to project the beneficial role of BM in disorders affecting the brain, including Alzheimer's disease, Parkinson's disease, stroke, epilepsy, and depression. The active constituents and metabolites responsible for the effects of BM could be bacoside A and B, bacopaside I and II, bacopasaponin C, betulinic acid, asiatic acid, loliolide, ebelin lactone, and quercetin. The mechanistic role of BM in brain disorders might be related to its ability to modulate neurotransmission, neurogenesis, neuronal/ glial plasticity, intracellular signaling, epigenetics, cerebral blood flow, energy metabolism, protein folding, endoplasmic reticulum stress, neuroendocrine system, oxidative stress, inflammation, and apoptosis. We have also discussed CDRI-08, clinical trials, safety, emerging formulation technologies, as well as BM combinations, and dietary supplements. To propel the clinical translation of BM in disorders affecting the brain, strategies to improve brain delivery via novel formulations and integration of the preclinical findings into large and well-defined clinical trials, in appropriate age groups and sex, specifically in the patient population against existing medications as well as placebo, are essentially required.


Subject(s)
Bacopa , Humans , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Oxidative Stress , Brain
4.
Nanomedicine ; 40: 102481, 2022 02.
Article in English | MEDLINE | ID: mdl-34748963

ABSTRACT

Tolerance induction is central to the suppression of autoimmunity. Here, we engineered the preferential uptake of nano-conjugated autoantigens by spleen-resident macrophages to re-introduce self-tolerance and suppress autoimmunity. The brain autoantigen, myelin oligodendrocyte glycoprotein (MOG), was conjugated to 200 or 500 nm silica nanoparticles (SNP) and delivered to the spleen and liver-resident macrophages of experimental autoimmune encephalomyelitis (EAE) mice, used as a model of multiple sclerosis. MOG-SNP conjugates significantly reduced signs of EAE at a very low dose (50 µg) compared to the higher dose (>800 µg) of free-MOG. This was associated with reduced proliferation of splenocytes and pro-inflammatory cytokines secretion, decreased spinal cord inflammation, demyelination and axonal damage. Notably, biodegradable porous SNP showed an enhanced disease suppression assisted by elevated levels of regulatory T cells and programmed-death ligands (PD-L1/2) in splenic and lymph node cells. Our results demonstrate that targeting nano-conjugated autoantigens to tissue-resident macrophages in lymphoid organs can effectively suppress autoimmunity.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Nanoparticles , Animals , Autoimmunity , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/pathology , Mice , Mice, Inbred C57BL , Multiple Sclerosis/drug therapy , Multiple Sclerosis/pathology , Myelin-Oligodendrocyte Glycoprotein/therapeutic use
5.
Neuromolecular Med ; 23(4): 449-465, 2021 12.
Article in English | MEDLINE | ID: mdl-33948878

ABSTRACT

Based on the findings in recent years, we summarize the therapeutic potential of vorinostat (VOR), the first approved histone deacetylase (HDAC) inhibitor, in disorders of brain, and strategies to improve drug efficacy and reduce side effects. Scientific evidences provide a strong case for the therapeutic utility of VOR in various disorders affecting brain, including stroke, Alzheimer's disease, frontotemporal dementia, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, spinal muscular atrophy, X-linked adrenoleukodystrophy, epilepsy, Niemann-Pick type C disease, and neuropsychiatric disorders. Further elucidation of the neuroprotective and neurorestorative properties of VOR using proper clinical study designs could provide momentum towards its clinical application. To improve the therapeutic prospect, concerns on systemic toxicity and off-target actions need to be addressed along with the improvement in formulation and delivery aspects, especially with respect to solubility, permeability, and pharmacokinetic properties. Newer approaches in this regard include poly(ethylene glycol)-b-poly(DL-lactic acid) micelles, VOR-pluronic F127 micelles, encapsulation of iron complexes of VOR into PEGylated liposomes, human serum albumin bound VOR nanomedicine, magnetically guided layer-by-layer assembled nanocarriers, as well as convection-enhanced delivery. Even though targeting specific class or isoform of HDAC is projected as advantageous over pan-HDAC inhibitor like VOR, in terms of adverse effects and efficacy, till clinical validation, the idea is debated. As the VOR treatment-related adverse changes are mostly found reversible, further optimization of the therapeutic strategies with respect to dose, dosage regimen, and formulations of VOR could propel its clinical prospects.


Subject(s)
Drug Repositioning , Hydroxamic Acids , Brain , Histone Deacetylase Inhibitors/therapeutic use , Humans , Hydroxamic Acids/pharmacology , Vorinostat/pharmacology , Vorinostat/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...