Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 21(36): 12694-701, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26201954

ABSTRACT

Oleylamine (OA) based "hot injection" colloidal synthesis offers a versatile approach to the synthesis of highly monodisperse metallic and multi-metallic alloyed nanostructures in the absence of potentially toxic and unstable phosphine compounds. For application in heterogeneous catalysis and electrocatalysis, the adsorbed OA species at the metal surfaces should be effectively removed without compromising the structure and composition of the nanostructures. Herein, we investigate the removal of OA from colloidal Pt nanoparticles through 1) "chemical methods" such as washing in acetic acid or ethanol, and ligand exchange with pyridine; and 2) thermal pre-treatment between 185 and 400 °C in air, H2 or Ar atmospheres. The electrochemical reactivity of Pt nanoparticles is acutely affected by the presence of surface organic impurities, making this material ideal for monitoring the effectiveness of OA removal. The results showed that thermal treatment in Ar at temperatures above 400 °C provides highly active particles, with reactivity comparable to the benchmark commercial catalyst, Pt/ETEK. The mechanism involved in thermal desorption of OA was also investigated by thermogravimetric analysis coupled to mass spectrometry (TGA-MS). Oxidation of HCOOH and adsorbed CO in acidic solution were used as test reactions to assess the Pt electrocatalytic activity.

2.
Nanoscale ; 5(22): 11139-46, 2013 Nov 21.
Article in English | MEDLINE | ID: mdl-24065040

ABSTRACT

Morphologically similar cobalt oxide nanoparticles (Co3O4) of four different sizes (3 nm, 6 nm, 11 nm and 29 nm) with narrow size distribution were prepared by subtle variation of synthesis conditions. These nanoparticles were used as model materials to understand the structural and morphological changes that occur to cobalt oxide during sequential reduction, oxidation and further re-reduction process as a function of the initial size of cobalt oxide. On reduction, spherical cobalt nanoparticles were obtained independent of the original size of cobalt oxide. In contrast, subsequent oxidation of the metal particles led to solid spheres, hollow spheres or core-shell structures depending on the size of the initial metal particle. Further re-reduction of the oxidized structures was also observed to be size dependent. The hollow oxide shells formed by the large particles (29 nm) fragmented into smaller particles on reduction, while the hollow shells of the medium sized particles (11 nm) did not re-disperse on further reduction. Similarly, no re-dispersion was observed in the case of the small particles (6 nm). This model study provides useful insights into the size dependent behavior of metal/metal oxide particles during oxidation/reduction. This has important implications in petrochemical industry where cobalt is used as a catalyst in the Fischer-Tropsch process.

3.
Nanoscale ; 3(3): 1031-6, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21152582

ABSTRACT

Discrete core-shell hybrid nanoparticles comprising individual met-myoglobin (met-Mb) molecules incarcerated within an ultrathin polymer/silica shell were prepared without loss of biofunctionality by a facile self-assembly procedure. Solubilisation of met-Mb in cyclohexane in the near-absence of water was achieved by wrapping individual protein molecules in the amphiphilic triblock copolymer poly(ethylene-oxide)19-poly(propylene-oxide)69-poly(ethylene-oxide)19 (EO19-PO69-EO19, P123). Addition of tetramethoxysilane to the met-Mb/P123 conjugates in cyclohexane produced discrete nanoparticles that contained protein, polymer and silica, and which were 3-5.5 nm in size, consistent with the entrapment of single molecules of met-Mb. The hybrid nanoconstructs were isolated and re-dispersed in water without loss of secondary structure, and remained functionally active with respect to redox reactions and CO and O2 ligand binding at the porphyrin metallocentre. The incarcerated met-Mb biomolecules showed enhanced thermal stability up to a temperature of around 85 °C. These properties, along with the high biocompatibility of silica and P123, suggest that the silicified protein-polymer constructs could be utilised as functional nanoscale components in bionanotechnology.


Subject(s)
Biocompatible Materials/chemical synthesis , Myoglobin/chemistry , Nanostructures/chemistry , Nanostructures/ultrastructure , Polymers/chemistry , Silicon Dioxide/chemistry , Crystallization/methods , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties
4.
J Colloid Interface Sci ; 304(2): 437-41, 2006 Dec 15.
Article in English | MEDLINE | ID: mdl-17010361

ABSTRACT

Macroscopic mesoporous silica spheres have been fabricated by alternatively depositing preformed MCM-41 nanoparticles and polyelectrolytes onto polystyrene lattices. High surface area hollow mesoporous spheres were obtained by removal of the core by solvent or calcination. Further, the versatility of the layer-by-layer (LBL) method was extended to fabricate magnetite-mesoporous silica composites by depositing magnetite and MCM-41 nanoparticles onto polystyrene beads. Such high surface area composites are important since the mesopores can be used for encapsulation of varied materials like enzymes and drugs while the presence of magnetite ensures application in biocatalysis and separation under magnetic field.

SELECTION OF CITATIONS
SEARCH DETAIL
...