Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int Immunopharmacol ; 129: 111543, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38301413

ABSTRACT

Melanoma is an especially fatal neoplasm resistant to traditional treatment. The advancement of novel therapeutical approaches has gained attention in recent years by shedding light on the molecular mechanisms of melanoma tumorigenesis and their powerful interplay with the immune system. The presence of many mutations in melanoma cells results in the production of a varied array of antigens. These antigens can be recognized by the immune system, thereby enabling it to distinguish between tumors and healthy cells. In the context of peptide cancer vaccines, generally, they are designed based on tumor antigens that stimulate immunity through antigen-presenting cells (APCs). As naked peptides often have low potential in eliciting a desirable immune reaction, immunization with such compounds usually necessitates adjuvants and nanocarriers. Actually, nanoparticles (NPs) can provide a robust immune response to peptide-based melanoma vaccines. They improve the directing of peptide vaccines to APCs and induce the secretion of cytokines to get maximum immune response. This review provides an overview of the current knowledge of the utilization of nanotechnology in peptide vaccines emphasizing melanoma, as well as highlights the significance of physicochemical properties in determining the fate of these nanovaccines in vivo, including their drainage to lymph nodes, cellular uptake, and influence on immune responses.


Subject(s)
Melanoma , Humans , Nanovaccines , Peptides/therapeutic use , Antigen-Presenting Cells , Immunotherapy/methods
2.
Int J Pharm ; 624: 122049, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-35878871

ABSTRACT

High-dose methotrexate (MTX) chemotherapeutic applications confront drug specificity and pharmacokinetic challenges, which can be overcome by utilizing targeted drug delivery systems. In the present study, biotin-PEG conjugated nanogels of carboxymethyl polyethyleneimine (Biotin-PEG-CMPEI) were developed for active targeted delivery of MTX in triple negative breast cancer (TNBC). TEM and DLS analyses revealed uniform, discrete, and spherical particles with a mean hydrodynamic diameter of about 100 nm and ζ-potential of + 15 mV (pH = 7.4). Biotin-PEG-CMPEI nanogels exhibited a zero-order MTX release kinetics at pH = 7.5 and a swelling-controlled release at pH = 5.5. In 4 T1 cells treated with the MTX-loaded Biotin-PEG-CMPEI, the IC50 was reduced by about 10 folds compared to the free drug, while the unloaded nanogels showed no significant toxicity. In the model mice, the group treated with the MTX-loaded Biotin-PEG-CMPEI had a lower tumor volume and mortality rate animal model when compared to free drug. Additionally, histopathological analyses showed that the group treated with the MTX-loaded nanogels had less lung metastasis and glomerular damage caused by MTX. Overall, the MTX-loaded Biotin-PEG-CMPEI targeted directly against overexpressed biotin receptors in TNBC have been shown to improve the MTX safety and therapeutic efficacy.


Subject(s)
Methotrexate , Triple Negative Breast Neoplasms , Animals , Biotin , Drug Carriers , Drug Delivery Systems , Humans , Mice , Nanogels , Receptors, Growth Factor , Triple Negative Breast Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...