Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 15672, 2023 09 21.
Article in English | MEDLINE | ID: mdl-37735489

ABSTRACT

α-Glucosidase inhibition is an approved treatment for type 2 diabetes mellitus (T2DM). In an attempt to develop novel anti-α-glucosidase agents, two series of substituted imidazo[1,2-c]quinazolines, namely 6a-c and 11a-o, were synthesized using a simple, straightforward synthetic routes. These compounds were thoroughly characterized by IR, 1H and 13C NMR spectroscopy, as well as mass spectrometry and elemental analysis. Subsequently, the inhibitory activities of these compounds were evaluated against Saccharomyces cerevisiae α-glucosidase. In present study, acarbose was utilized as a positive control. These imidazoquinazolines exhibited excellent to great inhibitory potencies with IC50 values ranging from 12.44 ± 0.38 µM to 308.33 ± 0.06 µM, which were several times more potent than standard drug with IC50 value of 750.0 ± 1.5 µM. Representatively, compound 11j showed remarkable anti-α-glucosidase potency with IC50 = 12.44 ± 0.38 µM, which was 60.3 times more potent than positive control acarbose. To explore the potential inhibition mechanism, further evaluations including kinetic analysis, circular dichroism, fluorescence spectroscopy, and thermodynamic profile were carried out for the most potent compound 11j. Moreover, molecular docking studies and in silico ADME prediction for all imidazoquinazolines 6a-c and 11a-o were performed to reveal their important binding interactions, as well as their physicochemical and drug-likeness properties, respectively.


Subject(s)
Diabetes Mellitus, Type 2 , Glycoside Hydrolase Inhibitors , Humans , Glycoside Hydrolase Inhibitors/pharmacology , Acarbose/pharmacology , Quinazolines/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Kinetics , Molecular Docking Simulation , Saccharomyces cerevisiae , alpha-Glucosidases
2.
BMC Chem ; 17(1): 65, 2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37353836

ABSTRACT

To find new anti-browning and whitening agents in this study, new series of isopropylquinazolinone derivatives were designed and synthesized. All derivatives were evaluated as possible tyrosinase inhibitors and compound 9q bearing 4-fluorobenzyl moieties at the R position exhibited the best potencies with an IC50 value of 34.67 ± 3.68 µM. The kinetic evaluations of 9q as the most potent derivatives recorded mix-type inhibition. Compounds 9o and 9q also exhibited potent antioxidant capacity with IC50 values of 38.81 and 40.73 µM, respectively confirming their antioxidant potential. Molecular docking studies of 9q as the most potent derivative were exacuated and it was shown that quinazolinone and acetamide moieties of compound 9q participated in interaction with critical His residues of the binding site. The obtained results demonstrated that the 9q can be considered a suitable pharmacophore to develop potent tyrosinase inhibitors.

3.
Sci Rep ; 13(1): 7819, 2023 05 15.
Article in English | MEDLINE | ID: mdl-37188744

ABSTRACT

New series of thioquinoline structures bearing phenylacetamide 9a-p were designed, synthesized and the structure of all derivatives was confirmed using different spectroscopic techniques including FTIR, 1H-NMR, 13C-NMR, ESI-MS and elemental analysis. Next, the α-glucosidase inhibitory activities of derivatives were also determined and all the synthesized compounds (IC50 = 14.0 ± 0.6-373.85 ± 0.8 µM) were more potent than standard inhibitors acarbose (IC50 = 752.0 ± 2.0 µM) against α-glucosidase. Structure-activity relationships (SARs) were rationalized by analyzing the substituents effects and it was shown that mostly, electron-donating groups at the R position are more favorable compared to the electron-withdrawing group. Kinetic studies of the most potent derivative, 9m, carrying 2,6-dimethylphenyl exhibited a competitive mode of inhibition with Ki value of 18.0 µM. Furthermore, based on the molecular dynamic studies, compound 9m depicted noticeable interactions with the α-glucosidase active site via several H-bound, hydrophobic and hydrophilic interactions. These interactions cause interfering catalytic potential which significantly decreased the α-glucosidase activity.


Subject(s)
Glycoside Hydrolase Inhibitors , Molecular Dynamics Simulation , Glycoside Hydrolase Inhibitors/chemistry , alpha-Glucosidases/metabolism , Kinetics , Molecular Docking Simulation , Structure-Activity Relationship , Molecular Structure
4.
BMC Chem ; 16(1): 97, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36380337

ABSTRACT

The development of new antidiabetes agents is necessary to obtain optimal glycemic control and overcome its complications. Different quinazolin-4(3H)-one bearing phenoxy-acetamide derivatives (7a-r) were designed and synthesized to develop α-glucosidase inhibitors. All the synthesized derivatives were evaluated against α-glucosidase in vitro and among them, compound 7b showed the highest α-glucosidase inhibition with an IC50 of 14.4 µM, which was ∼53 times stronger than that of acarbose. The inhibition kinetic studies showed that the inhibitory mechanism of compound 7b was a competitive type towards α-glucosidase. Also, molecular docking studies analyzed the interaction between the most potent derivative and α-glucosidase. Current findings indicate the new potential of quinazolin-4(3H)-ones that could be used for the development of novel agents against diabetes mellitus.

5.
IET Nanobiotechnol ; 14(6): 470-478, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32755956

ABSTRACT

Gadolinium as a contrast agent in MRI technique combined with DTPA causes contrast induced nephropathy (CIN) and nephrogenic systemic fibrosis (NSF) which can reduce by usage of antioxidants such as N-acetyl cysteine by increasing the membrane's permeability leads to lower cytotoxicity. In this study, N-acetyl cysteine-PLGA Nano-conjugate was synthesized according to stoichiometric rules of molar ratios andafter assessment by FTIR, NMR spectroscopy and Atomic Force Microscopy (AFM) imaging was combined with Magnevist® (gadopentetate dimeglumine) and its effects on the renal cells were evaluated. MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] and cellular uptake assays have indicated relatively significant toxicity of magnevist (P < 0.05) on three cell lines including HEK293, MCF7 and L929 compared to other synthesized ligands that shown no toxicity. Moreover, systemic evaluation has shown no notable changes of blood urea nitrogen (BUN) and creatinine in kidney of mice. In consequence, antioxidant effect was increased as well as the renal toxicity of the contrast agent reduced at the cell level. As a result, PLGA-NAC nano-conjugate can be a promising choice for decreasing the magnevist toxicity for treatment and prevention of CIN and will be able to open a new horizon to research on reduction of toxicity of contrast agents by using nanoparticles.


Subject(s)
Acetylcysteine , Gadolinium DTPA , Nanoconjugates , Polylactic Acid-Polyglycolic Acid Copolymer , Acetylcysteine/chemistry , Acetylcysteine/toxicity , Animals , Cell Survival/drug effects , Cells, Cultured , Contrast Media/chemistry , Contrast Media/pharmacokinetics , Drug Delivery Systems , Gadolinium DTPA/chemistry , Gadolinium DTPA/pharmacokinetics , HEK293 Cells , Humans , Kidney/cytology , Kidney/metabolism , MCF-7 Cells , Mice , Nanoconjugates/chemistry , Nanoconjugates/toxicity , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/toxicity
6.
Bioorg Chem ; 102: 104071, 2020 09.
Article in English | MEDLINE | ID: mdl-32688112

ABSTRACT

We herein applied the four step-synthetic route to prepare the pyridazine core attached to the various N-aryl acetamides. By this approach, a new series of pyridazine-based compounds were synthesized, characterized and evaluated for their activities against α-glucosidase enzyme. In-vitro α-glucosidase assay established that twelve compounds are more potent than acarbose. Compound 7a inhibited α-glucosidase with the IC50 value of 70.1 µM. The most potent compounds showed no cytotoxicity against HDF cell line. Molecular docking and kinetic studies were performed to determine the modes of interaction and inhibition, respectively.


Subject(s)
Acetamides/therapeutic use , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/therapeutic use , Molecular Docking Simulation/methods , alpha-Glucosidases/metabolism , Acetamides/pharmacology , Drug Design , Glycoside Hydrolase Inhibitors/pharmacology , Humans , Kinetics , Molecular Structure , Structure-Activity Relationship
7.
Chem Biodivers ; 16(5): e1800436, 2019 May.
Article in English | MEDLINE | ID: mdl-30957958

ABSTRACT

Two series of novel coumarin derivatives, substituted at 3 and 7 positions with aminoalkoxy groups, are synthesized, characterized, and screened. The effect of amine substituents and the length of cross-linker are investigated in acetyl- and butyrylcholinesterase (AChE and BuChE) inhibition. Target compounds show moderate to potent inhibitory activities against AChE and BuChE. 3-(3,4-Dichlorophenyl)-7-[4-(diethylamino)butoxy]-2H-chromen-2-one (4y) is identified as the most potent compound against AChE (IC50 =0.27 µm). Kinetic and molecular modeling studies affirmed that compound 4y works in a mixed-type way and interacts simultaneously with the catalytic active site (CAS) and peripheral anionic site (PAS) of AChE. In addition, compound 4y blocks ß-amyloid (Aß) self-aggregation with a ratio of 44.11 % at 100 µm and significantly protects PC12 cells from H2 O2 -damage in a dose-dependent manner.


Subject(s)
Coumarins/chemistry , Ligands , Neuroprotective Agents/chemistry , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Animals , Apoptosis/drug effects , Binding Sites , Butyrylcholinesterase/chemistry , Butyrylcholinesterase/metabolism , Catalytic Domain , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/therapeutic use , Coumarins/pharmacology , Coumarins/therapeutic use , Humans , Hydrogen Peroxide/toxicity , Inhibitory Concentration 50 , Kinetics , Molecular Docking Simulation , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , PC12 Cells , Rats , Structure-Activity Relationship
8.
J Labelled Comp Radiopharm ; 62(4): 166-177, 2019 04.
Article in English | MEDLINE | ID: mdl-30663099

ABSTRACT

In spite of previous efforts, there is lack of a radiotracer for imaging the 5HT1A receptor density in human brain, which is involved in several neurological brain disorders. The aim of this study was to prepare a new derivative of 1-(2-methoxyphenyl)piperazine (MPP) as a main chemical structure of 5HT1A receptor antagonist with 3-carbon linker and radiolabeled by [99m Tc][Tc(CO)3 (H2 O)3 ]+ precursor. Docking studies before chemical synthesis showed similar fashion of interaction for both WAY100635 (potent 5HT1A receptor antagonist) and new designed ligand, despite of addition of 99m Tc(CO)3 group in the structure of new ligand. MPP-(CH2 )3 -N3 was synthesized via three efficient and reliable chemical synthesis steps (more than 80% yield) then radiolabeled by addition of 2-ethynylpyridine and [99m Tc][Tc(CO)3 (H2 O)3 ]+ precursor in one pot procedure (more than 95% radiochemical efficiency) through click chemistry method. After incubation, radiotracer was found stable in vitro up to 2 hours. Binding assays showed about 33% specific binding of radiotracer to the 5HT1A receptors. Brain biodistribution studies indicated (0.26 ± 0.05)% ID/g hippocampus uptake at 30 minutes post injection, which its specificity was verified through blocking studies. These results suggested that new designed radioligand might serve as a potent SPECT imaging agent to estimate status of 5HT1A receptors.


Subject(s)
Molecular Docking Simulation , Organotechnetium Compounds/chemistry , Piperazine/chemistry , Piperazine/metabolism , Receptor, Serotonin, 5-HT2C/metabolism , Animals , Brain/metabolism , Click Chemistry , Humans , Isotope Labeling , Male , Piperazine/chemical synthesis , Piperazine/pharmacokinetics , Protein Conformation , Radiochemistry , Rats , Receptor, Serotonin, 5-HT2C/chemistry , Tissue Distribution
9.
J Biomater Sci Polym Ed ; 29(10): 1109-1125, 2018 07.
Article in English | MEDLINE | ID: mdl-29320951

ABSTRACT

Theranostics with the ability to simultaneous monitoring of treatment progress and controlled delivery of therapeutic agents has become as an emerging therapeutic paradigm in cancer therapy. In this study, we have developed a novel surface functionalized iron oxide nanoparticle using polyethyleneimine and glutathione for targeted curcumin (CUR) delivery and acceptable pH sensitive character. The developed magnetic nanoparticles (MNPs) were physicochemically characterized by FT-IR, XRD, FE-SEM and TEM. The MNPs was obtained in spherical shape with diameter of 50 nm. CUR was efficiently loaded into the MNPs and then in vitro release analyses were evaluated and showed that the prepared MNPs could release higher amount of CUR in acidic medium compared to neutral medium due to the pH sensitive property of the coated polymer. MTT assay confirmed the superior toxicity of CUR loaded MNPs compared to the control nanoparticles. Higher cellular uptake of the MNPs than negative control cells was demonstrated in SK-N-MC cell line. In vitro assessment of MRI properties showed that synthesized MNPs could be used as MRI imaging agent. Furthermore, according to hemolysis assay, the developed formulation exhibited suitable hemocompatibility. In vivo blood circulation analysis of the MNPs also exhibited enhanced serum bioavailability up to 2.5 fold for CUR loaded MNPs compared with free CUR.


Subject(s)
Curcumin/pharmacology , Drug Carriers/chemistry , Ferrosoferric Oxide/chemistry , Glutathione/chemistry , Magnetite Nanoparticles/chemistry , Polyethyleneimine/chemistry , Animals , Antineoplastic Agents/pharmacology , Biological Transport , Cell Line, Tumor , Cell Survival/drug effects , Contrast Media/chemistry , Delayed-Action Preparations/chemistry , Drug Carriers/pharmacokinetics , Drug Liberation , Humans , Hydrogen-Ion Concentration , Magnetic Resonance Imaging , Male , Molecular Targeted Therapy , Particle Size , Rats, Wistar , Surface Properties , Theranostic Nanomedicine
10.
Contrast Media Mol Imaging ; 2017: 3625729, 2017.
Article in English | MEDLINE | ID: mdl-29097918

ABSTRACT

Designing a unique theranostic biocompatible, biodegradable, and cost-effective agent which is easy to be synthesized as a biohybrid material was the aim of this study. In this matter, asparagine attached to anionic linear globular dendrimer G2 (as a biocompatible, biodegradable, and cost-effective agent which is negatively charged nanosized and water soluble polymer that outweighs other traditionally used dendrimers) and finally contrast agent (Gd3+) was loaded (which made complexes) in synthesized asparagine-dendrimer. Observations revealed that, in addition to successful colon cancer and brain targeting, Gd3+-dendrimer-asparagine, the proposed theranostic agent, could increase T1 MR relaxation times, decrease T2 MR relaxation times significantly, and improve contrast of image as well as illustrating good cellular uptake based on florescent microscopy/flow cytometry and ICP-mass data. In addition to that, it increased tumor growth inhibition percentage (TGI%) significantly compared to FDA approved contrast agent, Magnevist. Totally, Gd3+-anionic linear globular dendrimer G2-asparagine could be introduced to the cancer imaging/therapy (theranostics) protocols after in vivo MR and fluorescent analysis and passing clinical trials. Hence, this nanotheranostic agent would be a promising candidate for brain drug delivery and imaging in the future.


Subject(s)
Dendrimers/chemistry , Theranostic Nanomedicine/methods , Animals , Asparagine , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/therapy , Contrast Media , Dendrimers/therapeutic use , Drug Design , Female , Gadolinium , Heterografts , Humans , Magnetic Resonance Imaging/methods , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...