Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 12: 650215, 2021.
Article in English | MEDLINE | ID: mdl-33868350

ABSTRACT

Abiotic stresses, mainly salinity and drought, are the most important environmental threats that constrain worldwide food security by hampering plant growth and productivity. Plants cope with the adverse effects of these stresses by implementing a series of morpho-physio-biochemical adaptation mechanisms. Accumulating effective osmo-protectants, such as proline and glycine betaine (GB), is one of the important plant stress tolerance strategies. These osmolytes can trigger plant stress tolerance mechanisms, which include stress signal transduction, activating resistance genes, increasing levels of enzymatic and non-enzymatic antioxidants, protecting cell osmotic pressure, enhancing cell membrane integrity, as well as protecting their photosynthetic apparatus, especially the photosystem II (PSII) complex. Genetic engineering, as one of the most important plant biotechnology methods, helps to expedite the development of stress-tolerant plants by introducing the key tolerance genes involved in the biosynthetic pathways of osmolytes into plants. Betaine aldehyde dehydrogenase (BADH) is one of the important genes involved in the biosynthetic pathway of GB, and its introduction has led to an increased tolerance to a variety of abiotic stresses in different plant species. Replacing down-regulated ferredoxin at the acceptor side of photosystem I (PSI) with its isofunctional counterpart electron carrier (flavodoxin) is another applicable strategy to strengthen the photosynthetic apparatus of plants under stressful conditions. Heterologous expression of microbially-sourced flavodoxin (Fld) in higher plants compensates for the deficiency of ferredoxin expression and enhances their stress tolerance. BADH and Fld are multifunctional transgenes that increase the stress tolerance of different plant species and maintain their production under stressful situations by protecting and enhancing their photosynthetic apparatus. In addition to increasing stress tolerance, both BADH and Fld genes can improve the productivity, symbiotic performance, and longevity of plants. Because of the multigenic and complex nature of abiotic stresses, the concomitant delivery of BADH and Fld transgenes can lead to more satisfying results in desired plants, as these two genes enhance plant stress tolerance through different mechanisms, and their cumulative effect can be much more beneficial than their individual ones. The importance of BADH and Fld genes in enhancing plant productivity under stress conditions has been discussed in detail in the present review.

2.
Sci Rep ; 8(1): 13405, 2018 09 07.
Article in English | MEDLINE | ID: mdl-30194320

ABSTRACT

Thymol, as a dietary monoterpene, is a phenol derivative of cymene, which is the major component of the essential oil of Trachyspermum ammi (L.). It shows multiple biological activities: antifungal, antibacterial, antivirus and anti-inflammatory. T. ammi, commonly known as ajowan, belongs to Apiaceae and is an important medicinal seed spice. To identify the putative genes involved in thymol and other monoterpene biosynthesis, we provided transcriptomes of four inflorescence tissues of two ajowan ecotypes, containing different thymol yield. This study has detected the genes encoding enzymes for the go-between stages of the terpenoid biosynthesis pathways. A large number of unigenes, differentially expressed between four inflorescence tissues of two ajowan ecotypes, was revealed by a transcriptome analysis. Furthermore, differentially expressed unigenes encoding dehydrogenases, transcription factors, and cytochrome P450s, which might be associated with terpenoid diversity in T. ammi, were identified. The sequencing data obtained in this study formed a valuable repository of genetic information for an understanding of the formation of the main constituents of ajowan essential oil and functional analysis of thymol-specific genes. Comparative transcriptome analysis led to the development of new resources for a functional breeding of ajowan.


Subject(s)
Apiaceae , Gene Expression Regulation, Plant/physiology , Plants, Medicinal , Thymol/metabolism , Transcriptome/physiology , Apiaceae/genetics , Apiaceae/metabolism , Biosynthetic Pathways/physiology , Cytochrome P-450 Enzyme System/biosynthesis , Cytochrome P-450 Enzyme System/genetics , Inflorescence/cytology , Inflorescence/metabolism , Molecular Sequence Data , Oxidoreductases/biosynthesis , Oxidoreductases/genetics , Plant Proteins/biosynthesis , Plant Proteins/genetics , Plants, Medicinal/genetics , Plants, Medicinal/metabolism , Transcription Factors/metabolism
3.
Biomed Res Int ; 2017: 7283806, 2017.
Article in English | MEDLINE | ID: mdl-29234682

ABSTRACT

This is the first report evaluating the relationship between the chemical compositions of cumin seeds (based on the analysis of the content of catalase, ascorbate peroxidase, proline, protein, terpenic compounds, alcohol/phenols, aldehydes, and epoxides) and the induction efficiency of somatic embryogenesis in two Iranian superior cumin landraces (Golestan and North Khorasan). Cotyledons isolated from Golestan landrace seeds cultivated on MS medium supplemented with 0.1 mg/L kinetin proved to be the best primary explant for the induction of somatic embryogenesis as well as the regeneration of the whole plantlet. Results indicated that different developmental stages of somatic embryos were simultaneously observed on a callus with embryogenic potential. The high content of catalase, ascorbate peroxidase, proline, and terpenic hydrocarbons and low content of alcoholic and phenolic compositions had a stimulatory effect on somatic embryogenesis. Band patterns of RAPD markers in regenerated plants were different from those of the mother plants. This may be related to somaclonal variations or pollination system of cumin. Generally, measurement of chemical compositions can be used as a marker for evaluating the occurrence of somatic embryogenesis in cumin. Also, somaclonal variations of regenerated plants can be applied by the plant breeders in breeding programs.


Subject(s)
Cuminum/chemistry , Plant Somatic Embryogenesis Techniques , Proteins/genetics , Seeds/chemistry , Ascorbate Peroxidases/chemistry , Catalase/chemistry , Cuminum/growth & development , Epoxy Compounds/chemistry , Iran , Phenols/chemistry , Proteins/chemistry , Random Amplified Polymorphic DNA Technique , Seeds/growth & development , Terpenes/chemistry
4.
J Genet ; 94(4): 611-7, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26690515

ABSTRACT

Silymarin is a flavonoid compound derived from milk thistle (Silybum marianum) seeds which has several pharmacological applications. Chalcone synthase (CHS) is a key enzyme in the biosynthesis of flavonoids; thereby, the identification of CHS encoding genes in milk thistle plant can be of great importance. In the current research, fragments of CHS genes were amplified using degenerate primers based on the conserved parts of Asteraceae CHS genes, and then cloned and sequenced. Analysis of the resultant nucleotide and deduced amino acid sequences led to the identification of two different members of CHS gene family,SmCHS1 and SmCHS2. Third member, full-length cDNA (SmCHS3) was isolated by rapid amplification of cDNA ends (RACE), whose open reading frame contained 1239 bp including exon 1 (190 bp) and exon 2 (1049 bp), encoding 63 and 349 amino acids, respectively. In silico analysis of SmCHS3 sequence contains all the conserved CHS sites and shares high homology with CHS proteins from other plants.Real-time PCR analysis indicated that SmCHS1 and SmCHS3 had the highest transcript level in petals in the early flowering stage and in the stem of five upper leaves, followed by five upper leaves in the mid-flowering stage which are most probably involved in anthocyanin and silymarin biosynthesis.


Subject(s)
Acyltransferases/genetics , Gene Expression Regulation, Plant/genetics , Genes, Plant/genetics , Silybum marianum/genetics , Amino Acid Sequence , Flowers/genetics , Molecular Sequence Data , Plant Leaves/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...