Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 28(16): 19726-19741, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33410005

ABSTRACT

Rapid population growth integrated with poor governance and urban planning is highly challenging resulting key for the selection of unsuitable landfill sites, particularly in developing counties. Therefore, the aim of this study is to investigate the suitable solid waste landfill sites in the capital of the country as a case study, by the integration of Geographical Information System (GIS) with fuzzy logic, analytical hierarchy process (AHP), and weighted linear combination (WLC) method based on multi-criteria decision-making (MCDM). We chose thirteen (13) criteria (9 factors and 4 constraints) and grouped them into two main categories (environmental and socioeconomic) to achieve the objectives. The AHP was employed to evaluate the relative importance of the factors followed by standardization of criteria factors based on fuzzy set theory. Subsequently, all criteria factors were combined based on AHP and fuzzy logic-WLC method in order to obtain land suitability map. Finally, the sites were identified by the intersection of two combined suitability index layers. The obtained results depicted that the integration of fuzzy logic, AHP, and WLC technique with GIS can produce satisfactory results for the suitable locations of solid waste landfill sites over complex topographic regions. Overall, the land suitability obtained based on fuzzy-WLC is more refined and smooth because of its better segregation and its potential to consider full tradeoff between factors and average risk. The AHP was identified (47 km2) as high suitable while fuzzy-WLC generated 36 km2 as suitable area. Finally, the intersection of both suitability index map shows numerous suitable landfill sites available in Islamabad city; however, the surface areas of the sites are small at individual level (less than 15 ha).


Subject(s)
Fuzzy Logic , Refuse Disposal , Cities , Geographic Information Systems , Solid Waste , Waste Disposal Facilities
2.
Environ Sci Pollut Res Int ; 28(11): 13697-13711, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33200383

ABSTRACT

Solar radiation (SR) is essential for yield improvement in lentil, which is a crop of marginal environments. Herein, experiments were conducted over 2 years under a semi-arid environment to study the radiation interception (RI), efficiency, growth, and development of three lentil genotypes (Punjab Masoor-2009 (PM-2009), NIAB Masoor-2006 (NM-2006), and NIAB Masoor-2002 (NM-2002)) in relation to three nitrogen rates (13, 19, and 25 kg ha-1). Seasonal dynamics of intercepted photoactive radiation (IPAR) and cumulated photosynthetic photon flux density were highly associated with seasonal dynamics of leaf area index (LAI), with a high value of R2 (0.93 and 0.89) across all nitrogen rates and genotypes in both years. Nitrogen application promoted growth, and maximum LAI (3.97 and 3.57) and RI (324 and 301 MJ m-2) were attained for the first and second years of study, respectively. Biomass and yield were positively associated with IPAR. Variation in radiation absorption (RA) among genotypes was due to different patterns of LAI development. In both years, yield (23% and 25%) and radiation use efficiency (RUE) for grain yield (0.44 and 0.37 g MJ-1) were respectively higher for PM-2009 than for the other genotypes. Genotype PM-2009 had 15 days shorter crop cycle than others while 14% higher GDDs accumulated in the first year compared with the second due to the higher temperature. High nitrogen (25 kg ha-1) application resulted in higher dry matter (DM), and grain yield (GY), while RUE and PAR were not statistically different under 19 kg N ha-1 application across years. Genotypes PM-2009 and NM-2006 may perform reasonably well under arid to semi-arid regions at farmer field. These findings may assist researchers and crop modelers to optimize the lentil ideotype for efficient light utilization.


Subject(s)
Lens Plant , Biomass , Lens Plant/genetics , Nitrogen , Photosynthesis , Plant Leaves
SELECTION OF CITATIONS
SEARCH DETAIL
...