Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Data Brief ; 50: 109456, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37600597

ABSTRACT

The Alexander micro-estuary, located at the eastern edge of the Mediterranean Sea, is a typical example of small water bodies that suffer from a combination of urban and agricultural pollution, and overuse of its natural water sources. It is∼6.5 km long, with maximum depth of 3 m and maximum width of 45 m. To evaluate the anthropogenic stress on the system and its ability to mitigate pollution, water samples were collected within the framework of Ruppin's Estuarine and Coastal Observatory [1]. Water samples were collected from the estuary head, which drains about 510 km2, and at a point 300 m upstream from the estuary mouth before water flows into the Mediterranean Sea. A total of 236 stormwater and 44 base-flow water samples between December 2016 and December 2018. Stormwater samples were collected every 0.25 - 4 h along the entire course of the flow events using an automated samplers (Sigma 900, Hach Company, Loveland CO, USA; and ISCO 3700 Full-Size Portable Sampler, Teledyne, Lincoln, NE, USA). Base-flow samples were taken once a month using a horizontal grab sampler (5 L, model 110B, OceanTest Equipment, Fort Lauderdale, FL, USA). All samples were filtered using 90mmGF/F filters (nominal pore size of 0.7 µm, MGF, Sartorius, Göttingen, Germany) and immediately frozen (-20°C) before chemical analysis. Chemical analysis was performed using liquid chromatography with high-resolution mass spectrometry (LC-HRMS) analysis using a QExactive Plus hybrid FT mass spectrometer coupled with a Dionex Ultimate 3000 RS UPLC (Thermo Fisher Scientific, Waltham, MA, USA). The targeted analysis, which included 15 fungicides, 25 herbicides, 18 Insecticides, and 19 pharmaceuticals, concluded with a total of 21,142 entries. All entries are organized in a worksheet, along with location, date, flood section duration, discharge rate, and the total water volume discharged during the relevant period. The provided data offers an opportunity to explore the sources, transport, and impact of a large mixture of organic pollutants in a confined aquatic system located in an urbanized coastal environment.

2.
Data Brief ; 49: 109444, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37577739

ABSTRACT

Data from a bathymetric mapping project conducted in seven Israeli coastal micro-estuaries (Lachish, Sorek, Yarkon, Alexander, Hadera, Taninim, and Kishon) is presented. The data were collected by rowing a kayak along an S-shaped track through the estuaries. An echosounder equipped with a Global Positioning System (GPS) unit were mounted on the kayak. The data preparation consisted of a) manual removal of outliers, mostly caused by instrument echo in water depths below the instrument's 0.5 m minimum; b) correction of the measured water level to sea level; and c) interpolation of the sampling points into a regular grid using a terrain-following interpolation algorithm. For each of the estuaries, the raw measurements as a text (csv) file and the interpolated data both as a text (CSV) file and a GeoTiff file were produced.

3.
Environ Pollut ; 265(Pt B): 114941, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32806444

ABSTRACT

Pesticides are potentially toxic to aquatic systems, even at low concentration, depending on their individual ecotoxicological properties and their mixture composition. Thus, to evaluate possible ecological stress due to pesticide load, a thorough assessment of the potential toxicity of pesticide mixtures is required. Here we report water discharge and quality data of an eastern Mediterranean micro-estuary (Alexander stream), targeting the temporal distribution of a pesticide mixture. Over 150 water samples were collected during 2 hydrological years representing base-flow and flood conditions. On average, each water sample contained 34 and 45 different pesticides with peak concentrations of 1.4 µg L-1 of Imidacloprid and 55 µg L-1 of Diuron during base-flow and flood events, respectively. Pesticide mixtures were potentially toxic to benthic invertebrates and algae during flood events, surpassing the toxicity benchmark with medians of 110% and 155%, respectively. The herbicide Diuron and the insecticide Imidacloprid were the main pesticides responsible for the high potential toxicity during flood events. The falling limb of the flood hydrographs was found to inflict the highest stress on the estuarine environment due to elevated toxicity combined with prolonged residence time of the water. Examination of the potential chronic toxicity of single compounds showed continuous stress for plants, algae, amphibians, crustaceans, insects and fish from nine pesticides. Our data show that the ecosystem of the Alexander micro-estuary is under a continuous chronic stress with acute peaks in potential toxicity during flood events and the period that follows them. We propose that analyzing a small set of flood-tail samples is needed for the evaluation of small estuarine ecosystems risk during the rainy season. From a management perspective, we suggest better control of application practices for Diuron in the watershed to minimize the stress to the estuarine ecosystem.


Subject(s)
Pesticides/analysis , Water Pollutants, Chemical/analysis , Animals , Ecosystem , Estuaries , Rivers
4.
Environ Sci Technol ; 54(18): 11182-11190, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32799450

ABSTRACT

Micro-estuarine ecosystems have a surface area <1 km2 and are abundant in Mediterranean regions. As a result of their small size, these systems are particularly vulnerable to the effects of chemical pollution. Due to the fluctuating flow conditions of base flow dominated by treated wastewater effluents and flood events transporting rural and urban non-point-source pollution, micro-estuaries are under a dynamic risk regime, consequently struggling to provide ecological services. This 2 year study explored the occurrence and risks of pharmaceutical contamination in the Alexander micro-estuary in Israel. Pharmaceuticals were detected in all samples (n = 280) at as high as 18 µg L-1 in flood events and 14 µg L-1 in base flow. The pharmaceutical mixture composition was affected by flow conditions with carbamazepine dominating the base flow and caffeine dominating flood events. The median annual risk quotients for fish, crustaceans, and algae were 19.6, 5.2, and 4.5, respectively, indicating that pharmaceuticals pose a high risk to the ecosystem. Ibuprofen, carbamazepine, and caffeine contributed most to the risk quotients. The current work highlights that micro-estuary ecosystems, like the Alexander estuary, are continuously exposed to pharmaceuticals and most likely to other pollutants, placing these ecologically important systems under an elevated risk in comparison to the more frequently studied large estuarine systems.


Subject(s)
Pharmaceutical Preparations , Water Pollutants, Chemical , Animals , Ecosystem , Environmental Monitoring , Estuaries , Israel , Rivers , Water Pollutants, Chemical/analysis
5.
Data Brief ; 27: 104809, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31832526

ABSTRACT

Ruppin's Estuarine and Coastal Observatory (RECO) is a Long-Term Ecological Research station positioned on the East Mediterranean shoreline between Tel-Aviv and Haifa, Israel. We present a comprehensive online database and an accompanying website that provides direct access to the physical, chemical, and biological characteristics of the local coastal marine ecosystem and the Alexander micro estuary. It includes three databases that are updated continuously since 2014: a) In situ stationary sensors data (10 min intervals) of surface and bottom temperature, salinity, oxygen and water level measured at three stations along the estuary. b) Monthly profiles and discrete biogeochemical samples (surface and bottom water) of multiple parameters at four stations located at the inland part of the estuary. Measured parameters include concentrations of chlorophyll-a, microalgae and bacteria (counted with a flow cytometer), Nitrate, Nitrite, Ammonium, Phosphate, total N, total P, particulate organic matter (POM), total suspended solids (TSS), biochemical oxygen demand (BOD), as well as Secchi depth in each station c) Bi-weekly profiles, chlorophyll-a concentrations and cell counts at two marine stations adjacent to the estuary, (1, and 7 Km from the estuary mouth, at bottom depths of 8 and 48 m). The database also includes historical data for the Taninim micro-estuary (2014-2016). The RECO observatory provides a unique data set documenting the interaction of highly eutrophicated estuarine water with the ultra-oligotrophic seawater of the Eastern Mediterranean. This combination results in sharp gradients of salinity, temperature, dissolved oxygen, and nutrients over very small scales (centimeters to meters) and therefore offers an important data set for the coastal shelf research community. The data set also provide a long-term baseline of the estuary hydrography and geochemistry with the hope to foster effective science-based management and environmental planning of this and similar systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...