Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Biol ; 348(3): 535-47, 2005 May 06.
Article in English | MEDLINE | ID: mdl-15826652

ABSTRACT

Dihydroorotases (EC 3.5.2.3) catalyze the reversible cyclization of carbamoyl aspartate to form dihydroorotate in de novo pyrimidine biosynthesis. The X-ray structures of Aquifex aeolicus dihydroorotase in two space groups, C222(1) and C2, were determined at a resolution of 1.7A. These are the first structures of a type I dihydroorotase, a class of molecules that includes the dihydroorotase domain of mammalian CAD. The type I enzymes are more ancient and larger, at 45 kDa, than the type II enzymes exemplified by the 38 kDa Escherichia coli dihydroorotase. Both dihydroorotases are members of the metallo-dependent hydrolase superfamily, whose members have a distorted "TIM barrel" domain containing the active site. However, A.aeolicus dihydroorotase has a second, composite domain, which the E.coli enzyme lacks and has only one of the two zinc atoms present in the E.coli enzyme. A.aeolicus dihydroorotase is unique in exhibiting significant activity only when complexed with aspartate transcarbamoylase, whereas the E.coli dihydroorotase and the CAD dihydroorotase domain are active as free proteins. The latency of A.aeolicus dihydroorotase can be related to two differences between its structure and that of E.coli dihydroorotase: (1) the monoclinic structure has a novel cysteine ligand to the zinc that blocks the active site and possibly functions as a "cysteine switch"; and (2) active site residues that bind the substrate in E.coli dihydroorotase are located in disordered loops in both crystal structures of A.aeolicus dihydroorotase and may function as a disorder-to-order "entropy switch".


Subject(s)
Bacteria/enzymology , Dihydroorotase/chemistry , Protein Structure, Tertiary , Amino Acid Sequence , Animals , Binding Sites , Crystallography, X-Ray , Cysteine/chemistry , Dihydroorotase/genetics , Dihydroorotase/metabolism , Models, Molecular , Molecular Sequence Data , Molecular Structure , Protein Structure, Secondary , Sequence Alignment , Zinc/chemistry
2.
J Biol Chem ; 279(51): 53136-44, 2004 Dec 17.
Article in English | MEDLINE | ID: mdl-15381710

ABSTRACT

Dihydroorotase (DHOase) catalyzes the reversible condensation of carbamoyl aspartate to form dihydroorotate in de novo pyrimidine biosynthesis. The enzyme from Aquifex aeolicus, a hyperthermophilic organism of ancient lineage, was cloned and expressed in Escherichia coli. The purified protein was found to be a 45-kDa monomer containing a single zinc ion. Although there is no other DHOase gene in the A. aeolicus genome, the recombinant protein completely lacked catalytic activity at any temperature tested. However, DHOase formed an active complex with aspartate transcarbamoylase (ATCase) from the same organism. Whereas the k(cat) of 13.8 +/- 0.03 s(-1) was close to the value observed for the mammalian enzyme, the K (m)for dihydroorotate, 3.03 +/- 0.05 mM was 433-fold higher. Gel filtration and chemical cross-linking showed that the complex exists as a 240-kDa hexamer (DHO(3)-ATC(3)) and a 480-kDa duodecamer (DHO(6)-ATC(6)) probably in rapid equilibrium. Complex formation protects both DHOase and ATCase against thermal degradation at temperatures near 100 degrees C where the organism grows optimally. These results lead to the reclassification of both enzymes: ATCase, previously considered a Class C homotrimer, now falls into Class A, whereas the DHOase is a Class 1B enzyme. CD spectroscopy indicated that association with ATCase does not involve a significant perturbation of the DHOase secondary structure, but the visible absorption spectrum of a Co(2+)-substituted DHOase is appreciably altered upon complex formation suggesting a change in the electronic environment of the active site. The association of DHOase with ATCase probably serves as a molecular switch that ensures that free, uncomplexed DHOase in the cell remains inactive. At pH 7.4, the equilibrium ratio of carbamoyl aspartate to dihydroorotate is 17 and complex formation may drive the reaction in the biosynthetic direction.


Subject(s)
Bacteria/enzymology , Bacterial Proteins/chemistry , Dihydroorotase/chemistry , Dihydroorotase/metabolism , Amino Acid Sequence , Aspartic Acid , Catalysis , Chromatography, Gel , Circular Dichroism , Cobalt/chemistry , Cross-Linking Reagents/pharmacology , Dimerization , Escherichia coli/metabolism , Hydrogen-Ion Concentration , Ions , Kinetics , Metals/chemistry , Models, Biological , Models, Chemical , Molecular Sequence Data , Protein Structure, Tertiary , Pyrimidines/chemistry , Recombinant Proteins/chemistry , Sequence Homology, Amino Acid , Spectrophotometry , Temperature , Time Factors , Zinc/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...