Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Langmuir ; 40(19): 10171-10183, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38698764

ABSTRACT

The inherent limits of the current produced by imposing salinity gradients along a nanofluidic channel having "hard" boundary walls heavily constrain the resulting energy harvesting efficacy, acting as major hindrances against the practicability of harnessing high power density from the mixing of water having different salinities. In this work, the infusion of variable-thickness polyelectrolyte layer of a conical shape is projected to augment salinity gradient power generation in nanochannels. Such a progressive thickening of a charged interfacial layer on account of axially declining ion concentration facilitates the shedding of enhanced numbers of mobile ions, bearing a net charge of equal and opposite to the surface-bound ions, into the mainstream current flow. We show that the proposed design can convert energy at a higher efficiency as compared to both solid-state and available polyelectrolyte layer (PEL)-covered nanochannels. The same is true for the maximum power density at moderate and high concentration ratios including natural salt gradient conditions for which more than 50% increase is achievable. The maximum values achieved for efficiency and power density read 50.3% and 6.6 kW/m2, respectively. Our results provide fundamental insights on strategizing variable-thickness polyelectrolyte layer grafting on the nanochannel interfaces, toward realizing high-performance osmotic power generators by altering the local ionic clouds alongside the grafted layers and enhancing the ionic mobility by inducing a driving potential gradient concomitantly. These findings open up a new strategy of efficient conversion of the power of the salinity difference of seawater and river water into electricity in a nanofluidic framework, surpassing the previously established limits of blue energy harvesting technologies.

2.
Soft Matter ; 20(17): 3641-3652, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38623003

ABSTRACT

Conical nanochannels employed to create ionic current rectification (ICR) in nanofluidic devices are prone to clogging due to the contraction at one end. As an alternative approach for creating ICR, a cylindrical nanochannel covered with a polyelectrolyte layer (PEL) of variable thickness is proposed in the present study. The efficacy of the proposed design is studied by numerically solving the governing equations including the Poisson, Nernst-Planck, and Stokes-Brinkman equations. Furthermore, the fundamental mechanism behind ICR is explained using a simplified one-dimensional model. The effects of the nanochannel radius, concentration of PEL fixed charges, and bulk ionic concentration on the rectification factor are then investigated in detail. It is shown that the proposed nanochannel provides larger rectification factors as compared to conical nanochannels over wide ranges of the fixed charge concentration and bulk ionic concentration. Such a performance can be achieved even at channel radii much larger than the tip radius of conical nanochannels, indicating not only the better performance of the proposed nanochannel but also its likely longer service life, because of reducing the probability of total ionic current blockage. This means that the proposed nanochannel could find widespread use in fluidic devices, as a replacement for conical nanofluidic diodes.

3.
Langmuir ; 39(35): 12292-12301, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37603825

ABSTRACT

Controlling the DNA translocation speed is critical in nanopore sequencing, but remains rather challenging in practice, as attributable to a complex coupling between nanoscale fluidics and electrically mediated migration of DNA in a dynamically evolving manner. One important factor influencing the translocation speed is the DNA-liquid slippage stemming from the hydrophobic nature of the oligonucleotide, an aspect that has been widely ignored in the reported literature. In an effort to circumvent this conceptual deficit, here we first develop an analytical model to bring out the slip-mediated coupling between the electroosmosis and DNA-electrophoresis in a solid-state nanopore at low surface charge limits, ignoring the end effects. Subsequently, we compare these results with the numerical simulation data on electrokinetically modulated DNA translocation in such a nanopore, albeit of finite length with due accommodation of the end effects, connecting two end reservoirs by deploying a fully coupled Poisson-Nernst-Plank-Stokes flow model. Both the numerical and analytical results indicate that the DNA translocation speed is a linearly increasing function of the slip length, with more than four-fold increase being observed for a slip length as minimal as 0.5 nm as compared to the no-slip scenario. Considering specific strategies on demand for arresting high translocation speeds for accurate DNA sequencing, the above results establish a theoretical proposition for the same, premised on an analytical expression of the DNA-hydrophobicity modulated enhancement in the translocation speed for designing a nanopore-based sequencing platform─a paradigm that remained to be underemphasized thus far.


Subject(s)
Electroosmosis , Nanopores , DNA/genetics , Oligonucleotides , Electrophoresis
4.
J Colloid Interface Sci ; 629(Pt B): 245-253, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36155919

ABSTRACT

In this paper, we explore a concept and present the first experimental evidence to show that it is possible to form a stable liquid film and create lifting force at the interface via thermal gradient to minimize interfacial rubbing of surfaces and the associated wear. The approach is based on manipulating the flow behavior via thermocapillary, which describes how a liquid can be made to flow from warm to cold regions purely by inducing a thermal gradient. We show that liquid bridges between two parallel plates can be manipulated and stabilized under a combined effect of the thermocapillary flow and the Couette flow, which describes the motion of a viscous fluid between two parallel plates in a relative sliding motion. The equilibrium stage is confirmed under different experimental conditions of a thermal gradient, interfacial gap, liquid viscosity, and liquid bridge volume. A strategy is proposed to control liquid motion and create lifting force between two plates. A theoretical model is also presented to illustrate the principle of the equilibrium stage. Creating lifting forces at the interface offers a new thermo-hydrodynamic tool for manipulating liquids behavior. This approach has the potential for controlling liquid motion in mechanical components and nature.

5.
Phys Chem Chem Phys ; 23(3): 2211-2221, 2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33439162

ABSTRACT

We theoretically investigate the feasibility of enhancing the reverse electrodialysis power generation in nanochannels by covering the surface with a polyelectrolyte layer (PEL). Along these lines, two conical nanochannels are considered that differ in the extent of the covering. Each nanochannel connects two large reservoirs filled with KCl electrolytes of different ionic concentrations. Considering the Poisson-Nernst-Planck and Navier-Brinkman equations, finite-element-based numerical simulations are performed under a steady-state. The influences of the PEL properties and the salinity gradient on the reverse electrodialysis characteristics are examined in detail via a thorough parametric study. It is shown that the maximum power generated is an increasing function of the charge density and the thickness of the PEL. This means that the maximum power generated may be theoretically increased to any desired degree by covering the nanochannel surface with a sufficiently dense and thick PEL. Considering a typical PEL with a charge density of 100 mol m-3 and a thickness of 8 nm along with a high-to-low concentration ratio of 1000, we demonstrate that it is possible to extract a power density of 51.5 W m-2, which is nearly three times the maximum achievable value employing bare conical nanochannels at the same salinity gradient.

6.
Anal Chim Acta ; 1122: 48-60, 2020 Jul 25.
Article in English | MEDLINE | ID: mdl-32503743

ABSTRACT

Because of their asymmetry, conical nanochannels/nanopores exhibit various attractive electrokinetic features, including ion selectivity, ionic concentration polarization, and ionic current rectification. The polyelectrolyte layer (PEL)-covered (soft) conical nanochannels have recently attracted significant attention because of their unique rectification characteristics. In the modeling of soft nanochannels, it is usually assumed that the properties of the PEL and the electrolyte are the same, an assumption that is not true, especially for dense PELs. In the present work, the influence of the PEL-electrolyte property difference on the ionic current rectification in conical soft nanochannels is studied. To this end, adopting a finite-element approach, the Poisson-Nernst-Planck and Navier-Stokes equations are numerically solved for a steady-state by considering different values of permittivity, diffusivity, and dynamic viscosity for the PEL and the electrolyte. The model is validated by comparing the results with the available theoretical and experimental data. The results show that the PEL-electrolyte property difference leads to a significant improvement of the rectification behavior, especially at low and moderate salt concentrations. This not only highlights the importance of considering different properties for the PEL and the electrolyte but also implies that the rectification behavior of soft nanochannels/nanopores may be improved considerably by utilizing denser PELs.

7.
Electrophoresis ; 41(1-2): 81-103, 2020 01.
Article in English | MEDLINE | ID: mdl-31755113

ABSTRACT

Theories on the electrophoresis of spherical soft particles suspended in an electrolyte solution are thoroughly reviewed. The review predominantly covers studies on the electrophoresis in dilute and concentrated suspensions as well as bounded media, carried out mainly during the past two decades. Moreover, studies on the electrostatics of soft particles are also surveyed. Finally, the research gaps and prospects of the electrophoresis of soft particles are presented.


Subject(s)
Electrophoresis , Mechanical Phenomena , Models, Biological , Models, Chemical , Polyelectrolytes/chemistry , Static Electricity , Surface Properties
8.
Anal Chim Acta ; 1080: 66-74, 2019 Nov 08.
Article in English | MEDLINE | ID: mdl-31409476

ABSTRACT

The application of nanopores for DNA sequencing faces some challenges. The main challenge is controlling the electrophoretic translocation velocity of DNA and one remedy is covering the inner wall of the nanopore with a polyelectrolyte layer (PEL). In this study, a more realistic analytical model is presented for DNA translocation in PEL-grafted nanopores that improves the available models by considering different values for permittivity and viscosity inside and outside the PEL, taking the wall charge effects into account, and relaxing the assumption of a linear hydrodynamic drag profile inside the PEL. It is shown that ignoring the ion partitioning, arisen due to the PEL-electrolyte permittivity difference, can lead to the overestimation of the electrophoretic velocity of DNA, whereas the opposite is true when the increase in the liquid viscosity within the PEL is not accounted for. Accordingly, polyelectrolyte monomers of lower permittivities may be utilized to reduce the DNA velocity, thereby increasing the resolution of DNA sequencing. This goal may also be achieved through correctly adjusting the wall charge and the charge density of the PEL fixed ions. The details regarding the control of the DNA translocation velocity are all discussed.


Subject(s)
DNA/chemistry , Nanopores , Polyelectrolytes/chemistry , Models, Chemical , Sequence Analysis, DNA/methods , Static Electricity , Viscosity
9.
Colloids Surf B Biointerfaces ; 170: 129-135, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-29894833

ABSTRACT

The effect of ion partitioning on the electrostatics of a soft particle with a volumetrically charged core and a pH-dependent polyelectrolyte layer (PEL) is numerically investigated. It is observed that, whenever the ion partitioning is noticeable, the soft layer can be fully charged in a broader range of pH. Besides, a higher number density of the PEL functional groups and a lower charge density of the core result in a sharper dependence of the electric potential on the electrolyte pH. Briefly, we conclude that, since the PEL charge is dependent upon the concentration of the hydroxide/hydrogen ions, for the pH-regulated soft particles, the ion partitioning effect, as a phenomenon influencing the ionic distribution, can be a determinant factor. So taking the effect of the ion partitioning into consideration is strongly recommended for a more realistic description of the electrostatics of the pH-regulated soft particles.


Subject(s)
Hydrogen/chemistry , Hydroxides/chemistry , Polymers/chemistry , Electrolytes/chemistry , Hydrogen-Ion Concentration , Ions/chemistry , Particle Size , Static Electricity , Surface Properties
10.
Anal Chim Acta ; 990: 121-134, 2017 Oct 16.
Article in English | MEDLINE | ID: mdl-29029735

ABSTRACT

The viscoelasticity effects on the reaction-diffusion rates in a Y-shaped microreactor are studied utilizing the PTT rheological model. The flow is assumed to be fully developed and considered to be created under a combined action of electroosmotic and pressure forces. In general, finite-volume-based numerical simulations are conducted to handle the problem; however, analytical solutions based on the depthwise averaging approach are also obtained for the case for which there is no reaction between the inlet components. The analytical solutions are found to predict accurate results when the width to height ratio is at least 10 and acceptable results for lower aspect ratios. An investigation of the viscoelasticity effect reveals that it is accompanied by a significant reduction of the production rate and the production efficiency, defined as the ratio of the average product concentration to the inlet concentration of the limiting reactant. In addition, this effect gives rise to a more uniform transport with more symmetric concentration distributions. The pressure effects on the reaction-diffusion rates are also pronounced in the presence of viscoelasticity. Finally, the influences of the product diffusivity are investigated for the first time revealing that the lower it is the thinner the area of significant production becomes.

11.
Electrophoresis ; 37(5-6): 809-17, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26995195

ABSTRACT

The diffusioosmosis of an electrolyte solution inside a uniformly charged rectangular channel at steady locally developed conditions is the subject of this study. Utilizing a finite element based numerical procedure, we try to estimate the errors incurred by modeling the actual rectangular geometry of typical microchannels as a slit. We demonstrate that the flow pattern and direction are generally dependent upon the width-to-height ratio of the channel. Such a finding, besides showing the ineffectiveness of the slit geometry in representing a rectangular channel of small aspect ratio, informs us of another mechanism of controlling the diffusioosmotic flow. Inspections of the mean velocity reveal that, although it drastically grows by increasing the aspect ratio at smaller values of this parameter, no significant change is observed when the aspect ratio is 5 or higher. The same trend is observed when EDL is shrunk and is considered as a basis for the introduction of a slip-like velocity, similar to the concept of the Helmholtz-Smoluchowski electroosmotic velocity, which will be of high practical importance when dealing with a micronsized channel. Because of its significance, an expression is presented for this slip velocity utilizing the curve fitting of the results, assuming a typical Peclet number.


Subject(s)
Electroosmosis/instrumentation , Electroosmosis/methods , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Equipment Design , Models, Theoretical , Research Design
12.
Phys Chem Chem Phys ; 17(43): 29193-200, 2015 Nov 21.
Article in English | MEDLINE | ID: mdl-26465606

ABSTRACT

The inclusion of the ionic size (steric) effects into the steady and locally developed diffusioosmotic flow inside a uniformly charged slit microchannel through a theoretical analysis is the subject of this study. The results indicate essential quantitative and qualitative distinctions between the steric effects on classical electrokinetic phenomena like electroosmosis and on diffusioosmosis. For example, although the steric effect on electroosmotic flow is always unfavorable, it may have a positive influence on diffusioosmosis and even double the mean velocity under certain conditions. Moreover, finite ionic sizes can even change the flow direction with a tendency to increase the chance of flow toward higher concentrations. Another interesting finding is that, unlike electroosmosis, the steric effects on diffusioosmotic flow do not vanish even when the EDL is very thin. The main quantitative difference between the ionic size effects on diffusioosmosis and the other electrokinetic phenomena is the critical zeta potential above which these effects become important which is here found to be only about several tens of millivolts. The more sensitivity of diffusioosmosis to the steric effects and also the above-mentioned surprisingly different trends are attributed to the induced electric field which may drastically get influenced by the steric factor.

13.
J Colloid Interface Sci ; 442: 8-14, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25514643

ABSTRACT

The electrokinetic phenomena at high zeta potentials may show several unique features which are not normally observed. One of these features is the ionic size (steric) effect associated with the solutions of high ionic concentration. In the present work, attention is given to the influences of finite ionic size on the cross stream diffusion process in an electrokinetically actuated Y-shaped micromixer. The method consists of a finite difference based numerical approach for non-uniform grid which is applied to the dimensionless form of the governing equations, including the modified Poisson-Boltzmann equation. The results reveal that, neglecting the ionic size at high zeta potentials gives rise to the overestimation of the mixing length, because the steric effects retard liquid flow, thereby enhancing the mixing efficiency. The importance of steric effects is found to be more intense for channels of smaller width to height ratio. It is also observed that, in sharp contrast to the conditions that the ions are treated as point charges, increasing the zeta potential improves the cross stream diffusion when incorporating the ionic size. Moreover, increasing the EDL thickness decreases the mixing length, whereas the opposite is true for the channel aspect ratio.


Subject(s)
Electroosmosis/instrumentation , Ions/chemistry , Diffusion , Equipment Design , Kinetics
14.
Anal Chim Acta ; 838: 64-75, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-25064245

ABSTRACT

We outline a comprehensive numerical procedure for modeling of species transport and surface reaction kinetics in electrokinetically actuated microfluidic devices of rectangular cross section. Our results confirm the findings of previous simplified approaches that a concentration wave is created for sufficiently long microreactors. An analytical solution, developed for the wave propagation speed, shows that, when normalizing with the fluid mean velocity, it becomes a function of three parameters comprising the channel aspect ratio, the relative adsorption capacity, and the kinetic equilibrium constant. Our studies also reveal that the reactor geometry idealized as a slit, instead of a rectangular shape, gives rise to the underestimation of the saturation time. The extent of this underestimation increases by increasing the Damkohler number or decreasing the dimensionless Debye-Hückel parameter. Moreover, increasing the values of the Damkohler number, the dimensionless Debye-Hückel parameter, the relative adsorption capacity, and the velocity scale ratio results in lower saturation times.

SELECTION OF CITATIONS
SEARCH DETAIL
...