Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
3.
Neuroscience ; 452: 98-110, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33197502

ABSTRACT

Vestibular nerve afferents are divided into regular and irregular groups based on the variability of interspike intervals in their resting discharge. Most afferents receive inputs from bouton terminals that contact type II hair cells as well as from calyx terminals that cover the basolateral walls of type I hair cells. Calyces have an abundance of different subtypes of KCNQ (Kv7) potassium channels and muscarinic acetylcholine receptors (mAChRs) and receive cholinergic efferent inputs from neurons in the brainstem. We investigated whether mAChRs affected membrane properties and firing patterns of calyx terminals through modulation of KCNQ channel activity. Patch clamp recordings were performed from calyx terminals in central regions of the cristae of the horizontal and anterior canals in 13-26 day old Sprague-Dawley rats. KCNQ mediated currents were observed as voltage sensitive currents with slow kinetics (activation and deactivation), resulting in spike frequency adaptation so that calyces at best fired a single action potential at the beginning of a depolarizing step. Activation of mAChRs by application of oxotremorine methiodide or inhibition of KCNQ channels by linopirdine dihydrochloride decreased voltage activated currents by ∼30%, decreased first spike latencies by ∼40%, resulted in action potential generation in response to smaller current injections and at lower (i.e., more hyperpolarized) membrane potentials, and increased the number of spikes fired during depolarizing steps. Interestingly, some of the calyces showed spontaneous discharge in the presence of these drugs. Together, these findings suggest that cholinergic efferents can modulate the response properties and encoding of head movements by afferents.


Subject(s)
Hair Cells, Vestibular , Vestibule, Labyrinth , Action Potentials , Animals , Cholinergic Agents/pharmacology , Rats , Rats, Sprague-Dawley
4.
J Neurophysiol ; 124(3): 962-972, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32816581

ABSTRACT

Previous studies have found GABA in vestibular end organs. However, existence of GABA receptors or possible GABAergic effects on vestibular nerve afferents has not been investigated. The current study was conducted to determine whether activation of GABAB receptors affects calyx afferent terminals in the central region of the cristae of semicircular canals. We used patch-clamp recording in postnatal day 13-18 (P13-P18) Sprague-Dawley rats of either sex. Application of GABAB receptor agonist baclofen inhibited voltage-sensitive potassium currents. This effect was blocked by selective GABAB receptor antagonist CGP 35348. Application of antagonists of small (SK)- and large-conductance potassium (BK) channels almost completely blocked the effects of baclofen. The remaining baclofen effect was blocked by cadmium chloride, suggesting that it could be due to inhibition of voltage-gated calcium channels. Furthermore, baclofen had no effect in the absence of calcium in the extracellular fluid. Inhibition of potassium currents by GABAB activation resulted in an excitatory effect on calyx terminal action potential firing. While in the control condition calyces could only fire a single action potential during step depolarizations, in the presence of baclofen they fired continuously during steps and a few even showed repetitive discharge. We also found a decrease in threshold for action potential generation and a decrease in first-spike latency during step depolarization. These results provide the first evidence for the presence of GABAB receptors on calyx terminals, showing that their activation results in an excitatory effect and that GABA inputs could be used to modulate calyx response properties.NEW & NOTEWORTHY Using in vitro whole cell patch-clamp recordings from calyx terminals in the vestibular end organs, we show that activation of GABAB receptors result in an excitatory effect, with decreased spike-frequency adaptation and shortened first-spike latencies. Our results suggest that these effects are mediated through inhibition of calcium-sensitive potassium channels.


Subject(s)
Action Potentials/physiology , GABA-B Receptor Agonists/pharmacology , GABA-B Receptor Antagonists/pharmacology , Hair Cells, Vestibular/physiology , Potassium Channels, Calcium-Activated/metabolism , Presynaptic Terminals/physiology , Receptors, GABA-B/metabolism , Semicircular Canals/physiology , Action Potentials/drug effects , Animals , Baclofen/pharmacology , Cadmium Chloride/pharmacology , Female , Hair Cells, Vestibular/drug effects , Male , Organophosphorus Compounds/pharmacology , Patch-Clamp Techniques , Potassium Channels, Calcium-Activated/drug effects , Presynaptic Terminals/drug effects , Rats , Rats, Sprague-Dawley , Receptors, GABA-B/drug effects , Semicircular Canals/drug effects
5.
J Neurophysiol ; 124(2): 360-374, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32609559

ABSTRACT

In the vestibular peripheral organs, type I and type II hair cells (HCs) transmit incoming signals via glutamatergic quantal transmission onto afferent nerve fibers. Additionally, type I HCs transmit via "non-quantal" transmission to calyx afferent fibers, by accumulation of glutamate and potassium in the synaptic cleft. Vestibular efferent inputs originating in the brainstem contact type II HCs and vestibular afferents. Here, synaptic inputs to type II HCs were characterized by using electrical and optogenetic stimulation of efferent fibers combined with in vitro whole cell patch-clamp recording from type II HCs in the rodent vestibular crista. Properties of efferent synaptic currents in type II HCs were similar to those found in cochlear HCs and mediated by activation of α9-containing nicotinic acetylcholine receptors (nAChRs) and small-conductance calcium-activated potassium (SK) channels. While efferents showed a low probability of release at low frequencies of stimulation, repetitive stimulation resulted in facilitation and increased probability of release. Notably, the membrane potential of type II HCs during optogenetic stimulation of efferents showed a strong hyperpolarization in response to single pulses and was further enhanced by repetitive stimulation. Such efferent-mediated inhibition of type II HCs can provide a mechanism to adjust the contribution of signals from type I and type II HCs to vestibular nerve fibers, with a shift of the response to be more like that of calyx-only afferents with faster non-quantal responses.NEW & NOTEWORTHY Type II vestibular hair cells (HCs) receive inputs from efferent neurons in the brain stem. We used in vitro optogenetic and electrical stimulation of vestibular efferent fibers to study their synaptic inputs to type II HCs. Stimulation of efferents inhibited type II HCs, similar to efferent effects on cochlear HCs. We propose that efferent inputs adjust the contribution of signals from type I and II HCs to vestibular nerve fibers.


Subject(s)
Brain Stem/physiology , Hair Cells, Vestibular/physiology , Neurons, Efferent/physiology , Receptors, Nicotinic/physiology , Synaptic Potentials/physiology , Vestibular Nerve/physiology , Animals , Electric Stimulation , Female , Male , Mice , Mice, 129 Strain , Optogenetics , Patch-Clamp Techniques , Rats , Rats, Sprague-Dawley
6.
J Neurosci Methods ; 341: 108689, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32380226

ABSTRACT

BACKGROUND: Injection into the inner ear through the round window (RW) or a cochleostomy is a reliable method for delivering drugs or viruses to the cochlea. This method has been less effective for fast deliveries to vestibular end organs. NEW METHOD: We describe a novel approach for rapid delivery of drugs to the vestibular end organ via the oval window (OW) and scala vestibuli in 1-3 month old C57BL/6 mice. The OW was directly accessed through the external ear canal after ablating the tympanic membrane and middle ear ossicles. A canalostomy in the superior canal provided a low pressure point for faster transit of injected solution from the OW to the vestibular neuroepithelia, allowing for higher rates of injection. RESULTS: The efficacy of this technique was shown by fast transit times of a colored artificial perilymph from the OW to the utricle and the ampullae of the horizontal and superior canals in ∼2 min. Following injection, the response of the vestibular nerve was preserved, as measured by the vestibular sensory evoked potentials (VsEP). COMPARISON WITH EXISTING METHODS: Previous studies have used posterior semicircular canals or the RW with canalostomy to gain access to vestibular end organs in mice. The OW with canalostomy, provides the means for high injection rates and fast and reliable delivery of drugs to vestibular hair cells and afferent terminals. CONCLUSIONS: The presented method for injections through the OW provides rapid delivery of solutions to vestibular end organs without adversely affecting vestibular nerve responses measured by VsEP.


Subject(s)
Pharmaceutical Preparations , Vestibule, Labyrinth , Animals , Mice , Mice, Inbred C57BL , Perilymph , Round Window, Ear/surgery
7.
J Vis Exp ; (150)2019 08 30.
Article in English | MEDLINE | ID: mdl-31524871

ABSTRACT

The vestibular system provides information about head movement and mediates reflexes that contribute to balance control and gaze stabilization during daily activities. Vestibular sensors are located in the inner ear on both sides of the head and project to the vestibular nuclei in the brainstem. Vestibular dysfunction is often due to an asymmetry between input from the two sides. This results in asymmetrical neural inputs from the two ears, which can produce an illusion of rotation, manifested as vertigo. The vestibular system has an impressive capacity for compensation, which serves to rebalance how asymmetrical information from the sensory end organs on both sides is processed at the central level. To promote compensation, various rehabilitation programs are used in the clinic; however, they primarily use exercises that improve multisensory integration. Recently, visual-vestibular training has also been used to improve the vestibulo-ocular reflex (VOR) in animals with compensated unilateral lesions. Here, a new method is introduced for rebalancing the vestibular activity on both sides in human subjects. This method consists of five unidirectional rotations in the dark (peak velocity of 320°/s) toward the weaker side. The efficacy of this method was shown in a sequential, double-blinded clinical trial in 16 patients with VOR asymmetry (measured by the directional preponderance in response to sinusoidal rotations). In most cases, VOR asymmetry decreased after a single session, reached normal values within the first two sessions in one week, and the effects lasted up to 6 weeks. The rebalancing effect is due to both an increase in VOR response from the weaker side and a decrease in response from the stronger side. The findings suggest that unidirectional rotation can be used as a supervised rehabilitation method to reduce VOR asymmetry in patients with longstanding vestibular dysfunction.


Subject(s)
Vestibular Diseases/rehabilitation , Adaptation, Physiological , Double-Blind Method , Head Movements , Humans , Reflex, Vestibulo-Ocular , Rotation , Vestibule, Labyrinth/physiology
8.
J Neurosci ; 39(35): 6922-6935, 2019 08 28.
Article in English | MEDLINE | ID: mdl-31285300

ABSTRACT

A group of vestibular afferent nerve fibers with irregular-firing resting discharges are thought to play a prominent role in responses to fast head movements and vestibular plasticity. We show that, in C57BL/6 mice (either sex, 4-5 weeks old), normal activity in the efferent vestibular pathway is required for function of these irregular afferents. Thermal inhibition of efferent fibers results in a profound inhibition of irregular afferents' resting discharges, rendering them inadequate for signaling head movements. In this way, efferent inputs adjust the contribution of the peripheral irregular afferent pathway that plays a critical role in peripheral vestibular signaling and plasticity.SIGNIFICANCE STATEMENT Vestibular end organs in the inner ear receive efferent inputs from the brainstem. Previously, electrical stimulation of efferents was linked to an increase in resting discharges of afferents and a decrease in their sensitivities. Here, we show that localized thermal inhibition of unmyelinated efferents results in a significant decrease in the activity of afferent nerve fibers, particularly those with irregular resting discharges implicated in responses to fast head movements and vestibular compensation. Thus, by upregulating and downregulating of afferent firing, particularly irregular afferents, efferents adjust neural activity sensitive to rapid head movements. These findings support the notion that peripheral vestibular end organs are not passive transducers of head movements and their sensory signal transmission is modulated by efferent inputs.


Subject(s)
Action Potentials/physiology , Neurons, Afferent/physiology , Neurons, Efferent/physiology , Vestibular Nerve/physiology , Afferent Pathways/physiology , Animals , Female , Head Movements/physiology , Male , Mice
9.
Front Neurol ; 9: 1196, 2018.
Article in English | MEDLINE | ID: mdl-30723455

ABSTRACT

Introduction: Vestibular dysfunction is a common disorder that results in debilitating symptoms. Even after full compensation, the vestibulo-ocular reflex (VOR) could be further improved by using rehabilitation exercises and visual-vestibular adaptation. We hypothesized that in patients with asymmetric vestibular function, the system could be rebalanced by unidirectional rotations toward the weaker side (i.e., a pure vestibular stimulation). Methods: Sixteen subjects (5 female and 11 male, 43.2 ± 17.0 years old) with chronic vestibular dysfunction that was non-responsive to other types of medical treatment were recruited for the study (ClinicalTrials.gov Identifier: NCT01080430). Subjects had VOR asymmetry quantified by an abnormal directional preponderance (DP) with rotation test and no previous history of central vestibular problems or fluctuating peripheral vestibular disorders. They participated either in the short-term study (one session) or the long-term study (7 visits over 5 weeks). Rehabilitation consisted of five trapezoid unidirectional rotations (peak velocity of 320°/s) toward the weaker side. Care was taken to slowly stop the rotation in order to avoid stimulation in the opposite direction during deceleration. To study the short-term effect, VOR responses were measured before and 10, 40, and 70 min after a single unidirectional rotational rehabilitation session. For long-term effects, the VOR gain was measured before and 70min after rehabilitation in each session. Results: We observed a significant decrease in VOR asymmetry even 10 min after one rehabilitation session (short-term study). With consecutive rehabilitation sessions in the long-term study, DP further decreased to reach normal values during the first 2 sessions and only one subjects required further rehabilitation after week 4. This change in DP was due to an increase in responses during rotations toward the weaker side and a decrease in VOR responses during rotations in the other direction. Conclusion: Our results show that unidirectional rotation can reduce the VOR imbalance and asymmetry in patients with previously compensated vestibular dysfunction and could be used as an effective supervised method for vestibular rehabilitation even in patients with longstanding vestibular dysfunction.

10.
J Neurosci ; 34(44): 14536-50, 2014 Oct 29.
Article in English | MEDLINE | ID: mdl-25355208

ABSTRACT

In the vestibular periphery a unique postsynaptic terminal, the calyx, completely covers the basolateral walls of type I hair cells and receives input from multiple ribbon synapses. To date, the functional role of this specialized synapse remains elusive. There is limited data supporting glutamatergic transmission, K(+) or H(+) accumulation in the synaptic cleft as mechanisms of transmission. Here the role of glutamatergic transmission at the calyx synapse is investigated. Whole-cell patch-clamp recordings from calyx endings were performed in an in vitro whole-tissue preparation of the rat vestibular crista, the sensory organ of the semicircular canals that sense head rotation. AMPA-mediated EPSCs showed an unusually wide range of decay time constants, from <5 to >500 ms. Decay time constants of EPSCs increased (or decreased) in the presence of a glutamate transporter blocker (or a competitive glutamate receptor blocker), suggesting a role for glutamate accumulation and spillover in synaptic transmission. Glutamate accumulation caused slow depolarizations of the postsynaptic membrane potentials, and thereby substantially increased calyx firing rates. Finally, antibody labelings showed that a high percentage of presynaptic ribbon release sites and postsynaptic glutamate receptors were not juxtaposed, favoring a role for spillover. These findings suggest a prominent role for glutamate spillover in integration of inputs and synaptic transmission in the vestibular periphery. We propose that similar to other brain areas, such as the cerebellum and hippocampus, glutamate spillover may play a role in gain control of calyx afferents and contribute to their high-pass properties.


Subject(s)
Glutamic Acid/metabolism , Hair Cells, Vestibular/metabolism , Synapses/metabolism , Synaptic Transmission/physiology , Animals , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Female , Hair Cells, Vestibular/drug effects , Male , Patch-Clamp Techniques , Quinoxalines/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, AMPA/antagonists & inhibitors , Receptors, AMPA/metabolism , Synapses/drug effects , Synaptic Transmission/drug effects
11.
J Physiol ; 592(7): 1565-80, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24366259

ABSTRACT

The vestibular system is responsible for processing self-motion, allowing normal subjects to discriminate the direction of rotational movements as slow as 1-2 deg s(-1). After unilateral vestibular injury patients' direction-discrimination thresholds worsen to ∼20 deg s(-1), and despite some improvement thresholds remain substantially elevated following compensation. To date, however, the underlying neural mechanisms of this recovery have not been addressed. Here, we recorded from first-order central neurons in the macaque monkey that provide vestibular information to higher brain areas for self-motion perception. Immediately following unilateral labyrinthectomy, neuronal detection thresholds increased by more than two-fold (from 14 to 30 deg s(-1)). While thresholds showed slight improvement by week 3 (25 deg s(-1)), they never recovered to control values - a trend mirroring the time course of perceptual thresholds in patients. We further discovered that changes in neuronal response variability paralleled changes in sensitivity for vestibular stimulation during compensation, thereby causing detection thresholds to remain elevated over time. However, we found that in a subset of neurons, the emergence of neck proprioceptive responses combined with residual vestibular modulation during head-on-body motion led to better neuronal detection thresholds. Taken together, our results emphasize that increases in response variability to vestibular inputs ultimately constrain neural thresholds and provide evidence that sensory substitution with extravestibular (i.e. proprioceptive) inputs at the first central stage of vestibular processing is a neural substrate for improvements in self-motion perception following vestibular loss. Thus, our results provide a neural correlate for the patient benefits provided by rehabilitative strategies that take advantage of the convergence of these multisensory cues.


Subject(s)
Motion Perception , Neurons , Proprioception , Sensory Thresholds , Vestibular Diseases/physiopathology , Vestibule, Labyrinth/physiopathology , Action Potentials , Animals , Cues , Disease Models, Animal , Head Movements , Macaca mulatta , Neurons/pathology , Recovery of Function , Time Factors , Vestibular Diseases/pathology , Vestibular Diseases/psychology , Vestibule, Labyrinth/pathology
12.
J Neurosci ; 32(42): 14685-95, 2012 Oct 17.
Article in English | MEDLINE | ID: mdl-23077054

ABSTRACT

Sensory substitution is the term typically used in reference to sensory prosthetic devices designed to replace input from one defective modality with input from another modality. Such devices allow an alternative encoding of sensory information that is no longer directly provided by the defective modality in a purposeful and goal-directed manner. The behavioral recovery that follows complete vestibular loss is impressive and has long been thought to take advantage of a natural form of sensory substitution in which head motion information is no longer provided by vestibular inputs, but instead by extravestibular inputs such as proprioceptive and motor efference copy signals. Here we examined the neuronal correlates of this behavioral recovery after complete vestibular loss in alert behaving monkeys (Macaca mulatta). We show for the first time that extravestibular inputs substitute for the vestibular inputs to stabilize gaze at the level of single neurons in the vestibulo-ocular reflex premotor circuitry. The summed weighting of neck proprioceptive and efference copy information was sufficient to explain simultaneously observed behavioral improvements in gaze stability. Furthermore, by altering correspondence between intended and actual head movement we revealed a fourfold increase in the weight of neck motor efference copy signals consistent with the enhanced behavioral recovery observed when head movements are voluntary versus unexpected. Thus, together our results provide direct evidence that the substitution by extravestibular inputs in vestibular pathways provides a neural correlate for the improvements in gaze stability that are observed following the total loss of vestibular inputs.


Subject(s)
Eye Movements/physiology , Head Movements/physiology , Neurons/physiology , Proprioception/physiology , Reflex, Vestibulo-Ocular/physiology , Vestibular Nuclei/physiology , Animals , Macaca mulatta , Male , Neural Pathways/pathology , Neural Pathways/physiology , Neurons/pathology , Photic Stimulation/methods , Vestibular Nuclei/pathology
13.
J Neurophysiol ; 105(2): 661-73, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21148096

ABSTRACT

Plasticity in neuronal responses is necessary for compensation following brain lesions and adaptation to new conditions and motor learning. In a previous study, we showed that compensatory changes in the vestibuloocular reflex (VOR) following unilateral vestibular loss were characterized by dynamic reweighting of inputs from vestibular and extravestibular modalities at the level of single neurons that constitute the first central stage of VOR signal processing. Here, we studied another class of neurons, i.e., the vestibular-only neurons, in the vestibular nuclei that mediate vestibulospinal reflexes and provide information for higher brain areas. We investigated changes in the relative contribution of vestibular, neck proprioceptive, and efference copy signals in the response of these neurons during compensation after contralateral vestibular loss in Macaca mulata monkeys. We show that the time course of recovery of vestibular sensitivity of neurons corresponds with that of lower extremity muscle and tendon reflexes reported in previous studies. More important, we found that information from neck proprioceptors, which did not influence neuronal responses before the lesion, were unmasked after lesion. Such inputs influenced the early stages of the compensation process evidenced by faster and more substantial recovery of the resting discharge in proprioceptive-sensitive neurons. Interestingly, unlike our previous study of VOR interneurons, the improvement in the sensitivity of the two groups of neurons did not show any difference in the early or late stages after lesion. Finally, neuronal responses during active head movements were not different before and after lesion and were attenuated relative to passive movements over the course of recovery, similar to that observed in control conditions. Comparison of compensatory changes observed in the vestibuloocular and vestibulospinal pathways provides evidence for similarities and differences between the two classes of neurons that mediate these pathways at the functional and cellular levels.


Subject(s)
Neuronal Plasticity/physiology , Postural Balance/physiology , Posture/physiology , Reflex/physiology , Sensory Receptor Cells/physiology , Vestibular Nuclei/physiology , Vestibule, Labyrinth/physiology , Animals , Feedback, Physiological/physiology , Macaca mulatta , Male , Vestibule, Labyrinth/surgery
14.
J Neurosci ; 30(30): 10158-68, 2010 Jul 28.
Article in English | MEDLINE | ID: mdl-20668199

ABSTRACT

Motor learning is required for the reacquisition of skills that have been compromised as a result of brain lesion or disease, as well as for the acquisition of new skills. Behaviors with well characterized anatomy and physiology are required to yield significant insight into changes that occur in the brain during motor learning. The vestibulo-ocular reflex (VOR) is well suited to establish connections between neurons, neural circuits, and motor performance during learning. Here, we examined the linkage between neuronal and behavioral VOR responses in alert behaving monkeys (Macaca mulatta) during the impressive recovery that occurs after unilateral vestibular loss. We show, for the first time, that motor learning is characterized by the dynamic reweighting of inputs from different modalities (i.e., vestibular vs extravestibular) at the level of the single neurons that constitute the first central stage of vestibular processing. Specifically, two types of information, which did not influence neuronal responses before the lesion, had an important role during compensation. First, unmasked neck proprioceptive inputs played a critical role in the early stages of this process demonstrated by faster and more substantial recovery of vestibular responses in proprioceptive sensitive neurons. Second, neuronal and VOR responses were significantly enhanced during active relative to passive head motion later in the compensation process (>3 weeks). Together, our findings provide evidence linking the dynamic regulation of multimodal integration at the level of single neurons and behavioral recovery, suggesting a role for homeostatic mechanisms in VOR motor learning.


Subject(s)
Brain Mapping , Learning/physiology , Neurons/physiology , Nonlinear Dynamics , Reflex, Vestibulo-Ocular/physiology , Vestibule, Labyrinth/physiology , Action Potentials/physiology , Afferent Pathways/physiology , Animals , Functional Laterality/physiology , Head Movements/physiology , Macaca mulatta , Male , Models, Neurological , Motor Activity/physiology , Physical Stimulation/methods , Proprioception/physiology , Rotation , Time Factors , Vestibule, Labyrinth/surgery
15.
J Neurophysiol ; 102(5): 2693-703, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19726724

ABSTRACT

Mechanical occlusion (plugging) of the slender ducts of semicircular canals has been used in the clinic as well as in basic vestibular research. Here, we investigated the effect of canal plugging in two macaque monkeys on the horizontal vestibuloocular reflex (VOR) and the responses of vestibular-nerve afferents during passive head rotations. Afferent responses to active head movements were also studied. The horizontal VOR gain decreased after plugging to <0.1 for frequencies <2 Hz but rose to about 0.6 as frequency was increased to 15 Hz. Afferents innervating plugged horizontal canals had response sensitivities that increased with the frequency of passive rotations from <0.01 (spikes/s)/( degrees/s) at 0.5 Hz to values of about 0.2 and 0.5 (spikes/s)/( degrees/s) at 8 Hz for regular and irregular afferents, respectively (<50% of responses in controls). An increase in phase lead was also noted following plugging in afferent discharge, but not in the VOR. Because the phase discrepancy between the VOR and afferent discharge is much larger than that seen in control animals, this suggests that central adaptation shapes VOR dynamics following plugging. The effect of canal plugging on afferent responses can be modeled as an increase in stiffness and a reduction in the dominant time constant and gain in the transfer function describing canal dynamics. Responses were also evident during active head rotations, consistent with the frequency content of these movements. We conclude that canal plugging in macaques is effective only at frequencies <2 Hz. At higher frequencies, afferents show significant responses, with a nearly 90 degrees phase lead, such that they encode near-rotational acceleration. Our results demonstrate that afferents innervating plugged canals respond robustly during voluntary movements, a finding that has implications for understanding the effects of canal plugging in clinical practice.


Subject(s)
Head Movements/physiology , Reflex, Vestibulo-Ocular/physiology , Rotation , Semicircular Canals/physiology , Surgical Instruments , Vestibular Nerve/physiology , Action Potentials/physiology , Afferent Pathways/physiology , Animals , Biomechanical Phenomena , Biophysics , Computer Simulation , Electric Stimulation/methods , Macaca fascicularis , Posture/physiology
16.
Ann N Y Acad Sci ; 1164: 29-36, 2009 May.
Article in English | MEDLINE | ID: mdl-19645877

ABSTRACT

Our vestibular organs are simultaneously activated by our own actions as well as by stimulation from the external world. The ability to distinguish sensory inputs that are a consequence of our own actions (vestibular reafference) from those that result from changes in the external world (vestibular exafference) is essential for perceptual stability and accurate motor control. Recent work in our laboratory has focused on understanding how the brain distinguishes between vestibular reafference and exafference. Single-unit recordings were made in alert rhesus monkeys during passive and voluntary (i.e., active) head movements. We found that neurons in the first central stage of vestibular processing (vestibular nuclei), but not the primary vestibular afferents, can distinguish between active and passive movements. In order to better understand how neurons differentiate active from passive head motion, we systematically tested neuronal responses to different combinations of passive and active motion resulting from rotation of the head-on-body and/or head-and-body in space. We found that during active movements, a cancellation signal was generated when the activation of proprioceptors matched the motor-generated expectation.


Subject(s)
Vestibule, Labyrinth/physiology , Animals , Head Movements , Macaca mulatta , Models, Biological , Neck/physiology , Neurons, Afferent , Proprioception
17.
Exp Brain Res ; 195(1): 45-57, 2009 May.
Article in English | MEDLINE | ID: mdl-19283371

ABSTRACT

The integration of neck proprioceptive and vestibular inputs underlies the generation of accurate postural and motor control. Recent studies have shown that central mechanisms underlying the integration of these sensory inputs differ across species. Notably, in rhesus monkey (Macaca mulata), an Old World monkey, neurons in the vestibular nuclei are insensitive to passive stimulation of neck proprioceptors. In contrast, in squirrel monkey, a New World monkey, stimulation produces robust modulation. This has led to the suggestion that there are differences in how sensory information is integrated during self-motion in Old versus New World monkeys. To test this hypothesis, we recorded from neurons in the vestibular nuclei of another species in the Macaca genus [i.e., M. fascicularis (cynomolgus monkey)]. Recordings were made from vestibular-only (VO) and position-vestibular-pause (PVP) neurons. The majority (53%) of neurons in both groups were sensitive to neck proprioceptive and vestibular stimulation during passive body-under-head and whole-body rotation, respectively. Furthermore, responses during passive rotations of the head-on-body were well predicted by the linear summation of vestibular and neck responses (which were typically antagonistic). During active head movement, the responses of VO and PVP neurons were further attenuated (relative to a model based on linear summation) for the duration of the active head movement or gaze shift, respectively. Taken together, our findings show that the brain's strategy for the central processing of sensory information can vary even within a single genus. We suggest that similar divergence may be observed in other areas in which multimodal integration occurs.


Subject(s)
Macaca fascicularis/physiology , Neck/innervation , Neurons/physiology , Proprioception/physiology , Vestibular Nuclei/cytology , Action Potentials/physiology , Animals , Behavior, Animal , Head Movements/physiology , Models, Neurological , Neurons/cytology , Photic Stimulation , Rotation , Saccades/physiology
18.
J Neurophysiol ; 101(1): 141-9, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18971293

ABSTRACT

The distinction between sensory inputs that are a consequence of our own actions from those that result from changes in the external world is essential for perceptual stability and accurate motor control. In this study, we investigated whether linear translations are encoded similarly during active and passive translations by the otolith system. Vestibular nerve afferents innervating the saccule or utricle were recorded in alert macaques. Single unit responses were compared during passive whole body, passive head-on-body, and active head-on-body translations (vertical, fore-aft, or lateral) to assess the relative influence of neck proprioceptive and efference copy-related signals on translational coding. The response dynamics of utricular and saccular afferents were comparable and similarly encoded head translation during passive whole body versus head-on-body translations. Furthermore, when monkeys produced active head-on-body translations with comparable dynamics, the responses of both regular and irregular afferents remained comparable to those recorded during passive movements. Our findings refute the proposal that neck proprioceptive and/or efference copy inputs coded by the efferent system function to modulate the responses of the otolith afferents during active movements. We conclude that the vestibular periphery provides faithful information about linear movements of the head in the space coordinates, regardless of whether they are self- or externally generated.


Subject(s)
Neurons, Afferent/physiology , Proprioception/physiology , Saccule and Utricle/innervation , Vestibular Nerve/physiology , Acceleration , Animals , Data Interpretation, Statistical , Electrophysiology , Head Movements/physiology , Macaca fascicularis , Neck/innervation , Neck/physiology , Neurons, Efferent/physiology , Otolithic Membrane/physiology , Photic Stimulation , Regression Analysis , Vestibular Nerve/cytology , Vestibule, Labyrinth/physiology
19.
J Neurophysiol ; 101(2): 988-1001, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19091917

ABSTRACT

The peripheral vestibular organs have long been known to receive a bilateral efferent innervation from the brain stem. However, the functional role of the efferent vestibular system has remained elusive. In this study, we investigated efferent-mediated responses in vestibular afferents of alert behaving primates (macaque monkey). We found that efferent-mediated rotational responses could be obtained from vestibular nerve fibers innervating the semicircular canals after conventional afferent responses were nulled by placing the corresponding canal plane orthogonal to the plane of motion. Responses were type III, i.e., excitatory for rotational velocity trapezoids (peak velocity, 320 degrees/s) in both directions of rotation, consistent with those previously reported in the decerebrate chinchilla. Responses consisted of both fast and slow components and were larger in irregular (approximately 10 spikes/s) than in regular afferents (approximately 2 spikes/s). Following unilateral labyrinthectomy (UL) on the side opposite the recording site, similar responses were obtained. To confirm the vestibular source of the efferent-mediated responses, the ipsilateral horizontal and posterior canals were plugged following the UL. Responses to high-velocity rotations were drastically reduced when the superior canal (SC), the only intact canal, was in its null position, compared with when the SC was pitched 50 degrees upward from the null position. Our findings show that vestibular afferents in alert primates show efferent-mediated responses that are related to the discharge regularity of the afferent, are of vestibular origin, and can be the result of both afferent excitation and inhibition.


Subject(s)
Head Movements/physiology , Semicircular Canals/innervation , Vestibular Nerve/physiology , Wakefulness , Action Potentials/physiology , Afferent Pathways/physiology , Animals , Denervation , Ear, Inner/physiology , Ear, Inner/surgery , Functional Laterality/physiology , Macaca fascicularis , Motion Perception/physiology , Rotation , Semicircular Canals/physiology
20.
J Vestib Res ; 19(5-6): 171-82, 2009.
Article in English | MEDLINE | ID: mdl-20495234

ABSTRACT

The vestibulo-ocular reflex (VOR), which functions to stabilize gaze and ensure clear vision during everyday activities, shows impressive adaptation in response to environmental requirements. In particular, the VOR exhibits remarkable recovery following the loss of unilateral labyrinthine input as a result of injury or disease. The relative simplicity of the pathways that mediate the VOR, make it an excellent model system for understanding the changes (learning) that occur in the brain following peripheral vestibular loss to yield adaptive changes. This mini review considers the findings of behavioral, single unit recording and lesion studies of VOR compensation. Recent experiments have provided evidence that the brain makes use of multiple plasticity mechanisms (i.e., changes in peripheral as well as central processing) during the course of vestibular compensation to accomplish the sensory-motor transformations required to accurately guide behavior.


Subject(s)
Recovery of Function/physiology , Reflex, Vestibulo-Ocular/physiology , Vestibule, Labyrinth/physiology , Adaptation, Physiological/physiology , Animals , Cerebellum/physiology , Ear, Inner/physiology , Eye Movements , Head Movements , Humans , Macaca mulatta , Mice , Mice, Neurologic Mutants , Neuronal Plasticity , Posture , Vestibular Diseases/physiopathology , Vision, Ocular
SELECTION OF CITATIONS
SEARCH DETAIL
...