Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 654: 123928, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38401874

ABSTRACT

An important part of wound healing is providing effective wound care, coupled with preventing wound infection, which slows or disrupts healing. There are currently many herbal plants that have historical supernatural properties that show remarkable wound healing abilities. These herbal extracts have shown promising results when applied to electrospun nanofibrous mats platforms for wound healing. Accordingly, Malva Sylvestris extract (MS) was electrospun into polyvinyl alcohol/alginate nanofibrous mats (PVA/ALG). Field Emission Scanning Electron Microscopy (FESEM) demonstrated that the fiber diameter ranged from approximately 100-200 nm in nanofibrous mats, with a uniform appearance without beads. MS extract was detected in nanofibrous mats by Fourier Transform Infrared Spectroscopy (FTIR). A major benefit of incorporating MS extract into PVA/ALG nanofibrous mats is that their alterations have resulted in enhanced mechanical characteristics. The nanofibrous mats containing MS extracts showed significantly increased antibacterial efficacy against Gram-positive and Gram-negative bacteria. Based on the findings from in vivo experiments, the PVA/ALG/MS1 (M2) dressing demonstrated a wound closure rate of 93-94 % within 21 days of treatment in rats, indicating its significant potential for use as a wound dressing agent in the treatment of burn injuries. The combination of PVA, ALG, and MS1 in this nanofibrous mats exhibited beneficial properties, including biocompatibility, suitable mechanical strength, and the ability to promote cellular proliferation and angiogenesis, further validating its effectiveness as a wound healing dressing.


Subject(s)
Malva , Nanofibers , Rats , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Polyvinyl Alcohol/chemistry , Alginates/chemistry , Nanofibers/chemistry , Gram-Negative Bacteria , Gram-Positive Bacteria , Ethanol , Plant Extracts/pharmacology
2.
Int J Biol Macromol ; 260(Pt 2): 129400, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38224799

ABSTRACT

There is an increasing demand for stable and durable wound dressings to treat burn injuries and infections. Bioactive electrospun nanofibrous mats with antibacterial properties are promising for wound dressing usage. Electrospinning of biopolymers for wound dressing applications needs post-spinning crosslinking to prevent mat dissolution in moist wound environments. Here, we prepared durable wound dressing by using the Dopamine (DA) polymerization crosslinking in Alginate (ALG)/Polyvinyl alcohol (PVA) nanofibrous mats, which are developed by Ciprofloxacin (CIP) and Zinc oxide (ZO). The nanofibrous mats were investigated by FESEM, FTIR, mechanical strength, water contact angle, degradation, degree of swelling, and WVTR tests. The analyses demonstrate the nanofibrous mats with uniform and unbranched fibers, with a hydrophilic nature, which was porous, durable, and stable. Also, it showed the CIP and ZO addition enhanced their durability by crosslinking reinforcement. In addition, the drug release and antibacterial assays demonstrated the pH-sensitive release with more drug release at higher pH (bacterial invasion) and impressive antibacterial activity (up to 99 %). In the burn wound model in rats, the ALG/PVA/DA/CIP/ZO nanofibrous mats displayed excellent wound healing ability in wound closure and tissue regeneration. Also, complete re-epithelization and remodeling and highest collagen synthesis in histological assessment.


Subject(s)
Burns , Nanofibers , Zinc Oxide , Rats , Animals , Ciprofloxacin/pharmacology , Catecholamines , Alginates/chemistry , Polymerization , Anti-Bacterial Agents/chemistry , Burns/drug therapy , Polyvinyl Alcohol/chemistry , Bandages , Nanofibers/chemistry
3.
Curr Pharm Biotechnol ; 24(9): 1079-1093, 2023.
Article in English | MEDLINE | ID: mdl-36100989

ABSTRACT

Chronic wound healing is a time-consuming and complicated process. Severe risk for wound healing that can be life-threatening is bacterial invasion and wound during the healing process. Therefore, it is necessary to use a sui barrier to create a controlled environment for wound healing. Various wound dressings such as hydrocolloids, hydrogels, sponges, foams, films, and micro and nanofibers have been explored in recent decades. High surface-to-volume ratio, high similarity to the biological structure of the extracellular matrix, high porosity and very small pore size are some advantages of nanofibers that have become potential candidates for wound healing applications. Different methods are used to fabricate nanofibers like drawing-processing, template synthesis, self-assembly, phase separation, force-spinning and electrospinning. Electrospinning is the most desirable method due to the possibility of producing independent, accessible and controllable nanofibers. The fiberbased wound dressings and their manufacturing methods have been extensively discussed.


Subject(s)
Bandages , Nanofibers , Delivery of Health Care , Nanofibers/chemistry , Porosity , Wound Healing
4.
Curr Pharm Biotechnol ; 23(10): 1228-1244, 2022.
Article in English | MEDLINE | ID: mdl-34779369

ABSTRACT

Nanotechnology is considered one of the emerging fields of science that has influenced diverse applications, including food, biomedicine, and cosmetics. The production and usage of materials with nanoscale dimensions like nanoparticles are attractive parts of nanotechnology. Among different nanoparticles, zinc phosphate nanoparticles have attracted attention due to their biocompatibility, biosafety, non-toxicity, and environmental compatibility. These nanoparticles could be employed in various applications like anticorrosion, antibacterial, dental cement, glass ceramics, tissue engineering, and drug delivery. A variety of physical, chemical, and green synthesis methods have been used to synthesize zinc phosphate nanoparticles. All these methods have some limitations along with certain advantages. Chemical approaches may cause health risks and environmental problems due to the toxicity of hazardous chemicals used in these techniques. Moreover, physical methods require high amounts of energy as well as expensive instruments. However, biological methods are free of chemical contaminants and eco-friendly. This review is aimed to explore different methods for the synthesis of zinc phosphate nanoparticles, including physical, chemical, and more recently, biological approaches (using various sources such as plants, algae, and microorganisms). Also, it summarizes the practicable applications of zinc phosphate nanoparticles as anticorrosion pigment, dental cement, and drug delivery agents.


Subject(s)
Green Chemistry Technology , Metal Nanoparticles , Dental Cements , Metal Nanoparticles/chemistry , Phosphates , Plants/chemistry , Zinc Compounds
5.
Curr Pharm Biotechnol ; 21(12): 1232-1241, 2020.
Article in English | MEDLINE | ID: mdl-32370712

ABSTRACT

BACKGROUND: The promising properties of Zinc Phosphate (ZnP) Nanoparticles (NPs) have made them come into prominence as one of the most favorable catalysts in various industries with ever- increasing applications. Among several proposed synthetic methods, biological methods have mostly been desired for their sheer person-environment compatibility in comparison with those of chemical and physical ones. OBJECTIVE: Therefore, the synthesis of ZnP NPs via biological route was developed in this study. METHOD: Herein proposed a facile, applicable procedure for ZnP NPs via biosynthesis route, which included precipitation of Zinc Nitrate (Zn(NO3)2.6H2O) and diammonium hydrogen phosphate ((NH4)2HPO4) in the presence of Enterobacter aerogenes as the synthetic intermediate. Investigation of the anti-corrosion behavior of the synthesized NPs was explored on carbon steel in the hydrochloric acid corrosive environment to provide deeper insight into their unique anti-corrosion properties. Additionally, their antibacterial activities were also examined against Escherichia coli, Staphylococcus aureus and Streptococcus mutans. RESULTS: The results of X-ray Diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy, Field Emission Scanning Electron Microscope (FE-SEM) and the Energy Dispersive X-Ray Spectroscopy (EDS) analyses confirmed the successful synthesis of ZnP NPs. Moreover, the examinations of both anti-corrosion and antibacterial properties, revealed that the synthesized NPs could be a promising anti-corrosion/antibacterial agent. CONCLUSION: ZnP NPs with an average size of 30-35 nm were successfully synthesized via the simple, suitable biological method. Results implied that these particles could be used as a non-toxic, environmentally friendly, corrosion-resistant and antibacterial agent instead of toxic and uneco-friendly ones.


Subject(s)
Anti-Bacterial Agents/chemistry , Enterobacter aerogenes/growth & development , Green Chemistry Technology/methods , Metal Nanoparticles/chemistry , Nitrates/chemistry , Phosphates/chemistry , Zinc Compounds/chemistry , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Phosphates/pharmacology , Staphylococcus aureus/drug effects , Zinc Compounds/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...