Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Cell Mol Biol Lett ; 29(1): 71, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745155

ABSTRACT

BACKGROUND: Genetic abnormalities in the FGFR signalling occur in 40% of breast cancer (BCa) patients resistant to anti-ER therapy, which emphasizes the potential of FGFR-targeting strategies. Recent findings indicate that not only mutated FGFR is a driver of tumour progression but co-mutational landscapes and other markers should be also investigated. Autophagy has been recognized as one of the major mechanisms underlying the role of tumour microenvironment in promotion of cancer cell survival, and resistance to anti-ER drugs. The selective autophagy receptor p62/SQSTM1 promotes Nrf-2 activation by Keap1/Nrf-2 complex dissociation. Herein, we have analysed whether the negative effect of FGFR2 on BCa cell response to anti-ER treatment involves the autophagy process and/or p62/Keap1/Nrf-2 axis. METHODS: The activity of autophagy in ER-positive MCF7 and T47D BCa cell lines was determined by analysis of expression level of autophagy markers (p62 and LC3B) and monitoring of autophagosomes' maturation. Western blot, qPCR and proximity ligation assay were used to determine the Keap1/Nrf-2 interaction and Nrf-2 activation. Analysis of 3D cell growth in Matrigel® was used to assess BCa cell response to applied treatments. In silico gene expression analysis was performed to determine FGFR2/Nrf-2 prognostic value. RESULTS: We have found that FGFR2 signalling induced autophagy in AMPKα/ULK1-dependent manner. FGFR2 activity promoted dissociation of Keap1/Nrf-2 complex and activation of Nrf-2. Both, FGFR2-dependent autophagy and activation of Nrf-2 were found to counteract the effect of anti-ER drugs on BCa cell growth. Moreover, in silico analysis showed that high expression of NFE2L2 (gene encoding Nrf-2) combined with high FGFR2 expression was associated with poor relapse-free survival (RFS) of ER+ BCa patients. CONCLUSIONS: This study revealed the unknown role of FGFR2 signalling in activation of autophagy and regulation of the p62/Keap1/Nrf-2 interdependence, which has a negative impact on the response of ER+ BCa cells to anti-ER therapies. The data from in silico analyses suggest that expression of Nrf-2 could act as a marker indicating potential benefits of implementation of anti-FGFR therapy in patients with ER+ BCa, in particular, when used in combination with anti-ER drugs.


Subject(s)
Autophagy , Breast Neoplasms , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2 , Receptor, Fibroblast Growth Factor, Type 2 , Humans , Autophagy/drug effects , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Receptor, Fibroblast Growth Factor, Type 2/genetics , Female , Kelch-Like ECH-Associated Protein 1/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Cell Line, Tumor , MCF-7 Cells , Signal Transduction/drug effects , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics
2.
Br J Cancer ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38627607

ABSTRACT

Breast cancer (BCa) is a complex and heterogeneous disease, with different intrinsic molecular subtypes that have distinct clinical outcomes and responses to therapy. Although intrinsic subtyping provides guidance for treatment decisions, it is now widely recognised that, in some cases, the switch of the BCa intrinsic subtype (which embodies cellular plasticity), may be responsible for therapy failure and disease progression. Aberrant FGFR4 signalling has been implicated in various cancers, including BCa, where it had been shown to be associated with aggressive subtypes, such as HER2-enriched BCa, and poor prognosis. More importantly, FGFR4 is also emerging as a potential driver of BCa intrinsic subtype switching, and an essential promoter of brain metastases, particularly in the HER2-positive BCa. Although the available data are still limited, the findings may have far-reaching clinical implications. Here, we provide an updated summary of the existing both pre- and clinical studies of the role of FGFR4 in BCa, with a special focus on its contribution to subtype switching during metastatic spread and/or induced by therapy. We also discuss a potential clinical benefit of targeting FGFR4 in the development of new treatment strategies.

3.
Int J Mol Sci ; 25(5)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38473753

ABSTRACT

Regardless of the unprecedented progress in malignant melanoma treatment strategies and clinical outcomes of patients during the last twelve years, this skin cancer remains the most lethal one. We have previously documented that vitamin D and its low-calcaemic analogues enhance the anticancer activity of drugs including a classic chemotherapeutic-dacarbazine-and an antiangiogenic VEGFRs inhibitor-cediranib. In this study, we explored the response of A375 and RPMI7951 melanoma lines to CPL304110 (CPL110), a novel selective inhibitor of fibroblast growth factor receptors (FGFRs), and compared its efficacy with that of AZD4547, the first-generation FGFRs selective inhibitor. We also tested whether 1,25(OH)2D3, the active form of vitamin D, modulates the response of the cells to these drugs. CPL304110 efficiently decreased the viability of melanoma cells in both A375 and RPMI7951 cell lines, with the IC50 value below 1 µM. However, the metastatic RPMI7951 melanoma cells were less sensitive to the tested drug than A375 cells, isolated from primary tumour site. Both tested FGFR inhibitors triggered G0/G1 cell cycle arrest in A375 melanoma cells and increased apoptotic/necrotic SubG1 fraction in RPMI7951 melanoma cells. 1,25(OH)2D3 modulated the efficacy of CPL304110, by decreasing the IC50 value by more than 4-fold in A375 cell line, but not in RPMI7951 cells. Further analysis revealed that both inhibitors impact vitamin D signalling to some extent, and this effect is cell line-specific. On the other hand, 1,25(OH)2D3, have an impact on the expression of FGFR receptors and phosphorylation (FGFR-Tyr653/654). Interestingly, 1,25(OH)2D3 and CPL304110 co-treatment resulted in activation of the ERK1/2 pathway in A375 cells. Our results strongly suggested possible crosstalk between vitamin D-activated pathways and activity of FGFR inhibitors, which should be considered in further clinical studies.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Melanoma/metabolism , Vitamin D/metabolism , Receptors, Calcitriol/metabolism , Cell Line, Tumor , Skin Neoplasms/pathology , Vitamins/pharmacology , Receptors, Fibroblast Growth Factor , Cell Proliferation
4.
Transl Res ; 269: 1-13, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38395390

ABSTRACT

While numerous membrane-bound complement inhibitors protect the body's cells from innate immunity's autoaggression, soluble inhibitors like complement factor I (FI) are rarely produced outside the liver. Previously, we reported the expression of FI in non-small cell lung cancer (NSCLC) cell lines. Now, we assessed the content of FI in cancer biopsies from lung cancer patients and associated the results with clinicopathological characteristics and clinical outcomes. Immunohistochemical staining intensity did not correlate with age, smoking status, tumor size, stage, differentiation grade, and T cell infiltrates, but was associated with progression-free survival (PFS), overall survival (OS) and disease-specific survival (DSS). Multivariate Cox analysis of low vs. high FI content revealed HR 0.55, 95 % CI 0.32-0.95, p=0.031 for PFS, HR 0.51, 95 % CI 0.25-1.02, p=0.055 for OS, and HR 0.32, 95 % CI 0.12-0.84, p=0.021 for DSS. Unfavorable prognosis might stem from the non-canonical role of FI, as the staining pattern did not correlate with C4d - the product of FI-supported degradation of active complement component C4b. To elucidate that, we engineered three human NSCLC cell lines naturally expressing FI with CRISPR/Cas9 technology, and compared the transcriptome of FI-deficient and FI-sufficient clones in each cell line. RNA sequencing revealed differentially expressed genes engaged in intracellular signaling pathways controlling proliferation, apoptosis, and responsiveness to growth factors. Moreover, in vitro colony-formation assays showed that FI-deficient cells formed smaller foci than FI-sufficient NSCLC cells, but their size increased when purified FI protein was added to the medium. We postulate that a non-canonical activity of FI influences cellular physiology and contributes to the poor prognosis of lung cancer patients.


Subject(s)
Complement Factor I , Lung Neoplasms , Humans , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/mortality , Lung Neoplasms/genetics , Male , Complement Factor I/metabolism , Complement Factor I/genetics , Female , Middle Aged , Cell Line, Tumor , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/mortality , Aged , Prognosis , Gene Expression Regulation, Neoplastic
5.
Int J Pharm ; 645: 123408, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37703959

ABSTRACT

Local delivery of antibiotics has gained increasing interest in the treatment of osteomyelitis due to its effectiveness and safety. Since the regeneration of bone tissue at the site of infection is as important as bacterial eradication, implantable drug delivery systems should not only release the drugs in a proper manner but also exert the osseointegration capability. Herein, we present an implantable drug delivery system in a scaffold form with a unique set of features for local treatment of osteomyelitis. For the first time, collagen type I, ciprofloxacin-loaded mesoporous silica, and bioglass were combined to obtain scaffolds using the molding method. Drug-loaded mesoporous silica was blended with polydimethylsiloxane to prolong the drug release, whereas bioglass served as a remineralization agent. Collagen-silica scaffolds were evaluated in terms of physicochemical properties, drug release rate, mineralization potential, osteoblast response in vitro, antimicrobial activity, and biological properties using an in vivo preclinical model - chick embryo chorioallantoic membrane (CAM). The desirable multifunctionality of the proposed collagen-silica scaffolds was confirmed. They released the ciprofloxacin for 80 days, prevented biofilm development, and induced hydroxyapatite formation. Moreover, the resulting macroporous structure of the scaffolds promoted osteoblast attachment, infiltration, and proliferation. Collagen-silica scaffolds were also biocompatible and effectively integrated with CAM.


Subject(s)
Anti-Bacterial Agents , Osteomyelitis , Chick Embryo , Animals , Anti-Bacterial Agents/pharmacology , Tissue Scaffolds/chemistry , Silicon Dioxide/chemistry , Drug Delivery Systems , Collagen/chemistry , Bone and Bones , Ciprofloxacin/pharmacology , Osteomyelitis/drug therapy , Porosity , Biocompatible Materials/chemistry , Bone Regeneration
6.
J Mammary Gland Biol Neoplasia ; 28(1): 9, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37191822

ABSTRACT

The role of fibroblast growth factor receptor 2 (FGFR2), an important mediator of stromal paracrine and autocrine signals, in mammary gland morphogenesis and breast cancer has been extensively studied over the last years. However, the function of FGFR2 signalling in the initiation of mammary epithelial oncogenic transformation remains elusive. Here, FGFR2-dependent behaviour of nontumorigenic model of mammary epithelial cells was studied. In vitro analyses demonstrated that FGFR2 regulates epithelial cell communication with extracellular matrix (ECM) proteins. Silencing of FGFR2 significantly changed the phenotype of cell colonies in three-dimensional cultures, decreased integrins α2, α5 and ß1 protein levels and affected integrin-driven processes, such as cell adhesion and migration. More detailed analysis revealed the FGFR2 knock-down-induced proteasomal degradation of integrin ß1. Analysis of RNA-seq databases showed significantly decreased FGFR2 and ITGB1 mRNA levels in breast tumour samples, when compared to non-transformed tissues. Additionally, high risk healthy individuals were found to have disrupted correlation profiles of genes associated with FGFR2 and integrin signalling, cell adhesion/migration and ECM remodelling. Taken together, our results strongly suggest that FGFR2 loss with concomitant integrin ß1 degradation is responsible for deregulation of epithelial cell-ECM interactions and this process may play an important role in the initiation of mammary gland epithelial tumorigenesis.


Subject(s)
Integrin beta1 , Receptor, Fibroblast Growth Factor, Type 2 , Humans , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Integrin beta1/genetics , Integrin beta1/metabolism , Breast , Epithelial Cells/metabolism , Extracellular Matrix Proteins/metabolism , Integrins/metabolism
7.
Int J Pharm ; 633: 122610, 2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36669580

ABSTRACT

Osseointegration is a fundamental process during which implantable biomaterial integrates with host bone tissue. The surgical procedure of biomaterial implantation is highly associated with the risk of bacterial infection. Thus, the research continues for biodegradable bone void fillers which are able to stimulate the bone tissue regeneration and locally deliver the antibacterial agent. Herein, we obtained bifunctional bioglass (BG) using novel, preoptimized, rapid one-pot synthesis. Following the ISO Standards, the influence of the obtained BG on osteoblast-mediated phenomena, such as osteoconduction and osteoinduction was assessed and compared to two commercial materials: bioactive glass powder 45S and bioactive glass powder 85S. Direct-contact tests revealed osteoblast adhesion to BG particles; whereas, tests on extracts confirmed high viability of cells incubated with BG extract. Analyses of gene expression, alkaline phosphatase activity, and calcium phosphates deposition confirmed the stimulation of early and late stages of osteoblast differentiation and mineralization. Additionally, an extended evaluation of intracellular calcium fluctuations revealed a possible correlation between osteoblast calcium uptake and extracellular matrix mineralization. Moreover, proposed bioglass exhibited satisfactory doxycycline adsorption capacity and release profile. The obtained results confirmed the bifunctionality of the proposed BG and indicated its potential as osseointegrative bone drug delivery system.


Subject(s)
Biocompatible Materials , Calcium , Calcium/metabolism , Powders/metabolism , Biocompatible Materials/metabolism , Ceramics , Osteoblasts , Drug Delivery Systems , Glass
8.
Mol Oncol ; 16(15): 2823-2842, 2022 08.
Article in English | MEDLINE | ID: mdl-35726195

ABSTRACT

We have recently demonstrated that fibroblast growth factor receptor 2 (FGFR2)-mediated signalling alters progesterone receptor (PR) activity and response of oestrogen receptor α (ER)-positive (ER+) breast cancer (BCa) cell lines to anti-ER agents. Little is known about whether the crosstalk between ER and PR, shown to be modulated by the hormonal background, might also be affected by FGFR2. Here, PR-dependent behaviour of ER+ BCa cells was studied in the presence of oestrogen (E2) and progesterone (P4) and/or FGF7. In vitro analyses showed that FGF7/FGFR2 signalling: (a) abolished the effect of P4 on E2-promoted 3D cell growth and response to tamoxifen; (b) regulated ER and PR expression and activity; (c) increased formation of ER-PR complexes; and (d) reversed P4-triggered deregulation of ER-dependent genes. Analysis of clinical data demonstrated that the prognostic value of FGFR2 varied between patients with different menopausal status; that is, high expression of FGFR2 was significantly associated with longer progression-free survival (PFS) in postmenopausal patients, whereas there was no significant association in premenopausal patients. FGFR2 was found to positively correlate with the expression of JunB proto-oncogene, AP-1 transcription factor subunit (JUNB), an ER-dependent gene, only in premenopausal patients. Molecular analyses revealed that the presence of JunB was a prerequisite for FGFR2-mediated abrogation of P4-induced inhibition of cell growth. Our results demonstrate for the first time that the FGF7/FGFR2-JunB axis abolishes the modulatory effects of PR on ER-associated biological functions in premenopausal ER+ BCa. This may provide foundations for a better selection of patients for FGFR-targeting therapeutic strategies.


Subject(s)
Breast Neoplasms , Fibroblast Growth Factor 7 , Receptor, Fibroblast Growth Factor, Type 2 , Transcription Factors , Breast Neoplasms/genetics , Female , Fibroblast Growth Factor 7/genetics , Fibroblast Growth Factor 7/metabolism , Humans , Progesterone/pharmacology , Progesterone/therapeutic use , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Receptors, Progesterone/metabolism , Signal Transduction , Tamoxifen/therapeutic use , Transcription Factors/genetics , Transcription Factors/metabolism
9.
Biomedicines ; 10(5)2022 May 03.
Article in English | MEDLINE | ID: mdl-35625798

ABSTRACT

Increasing evidence suggests that the significance of the tumour immune microenvironment (TIME) for disease prognostication in invasive breast carcinoma is subtype-specific but equivalent studies in ductal carcinoma in situ (DCIS) are limited. The purpose of this paper is to review the existing data on immune cell composition in DCIS in relation to the clinicopathological features and molecular subtype of the lesion. We discuss the value of infiltration by various types of immune cells and the PD-1/PD-L1 axis as potential markers of the risk of recurrence. Analysis of the literature available in PubMed and Medline databases overwhelmingly supports an association between densities of infiltrating immune cells, traits of immune exhaustion, the foci of microinvasion, and overexpression of HER2. Moreover, in several studies, the density of immune infiltration was found to be predictive of local recurrence as either in situ or invasive cancer in HER2-positive or ER-negative DCIS. In light of the recently reported first randomized DCIS trial, relating recurrence risk with overexpression of HER2, we also include a closing paragraph compiling the latest mechanistic data on a functional link between HER2 and the density/composition of TIME in relation to its potential value in the prognostication of the risk of recurrence.

10.
Cancers (Basel) ; 14(8)2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35454913

ABSTRACT

Background: Cancer-associated fibroblasts (CAFs) are the most abundant cell type in the tumor microenvironment (TME). Estrogen receptor alpha 36 (ERα36), the alternatively spliced variant of ERα, is described as an unfavorable factor when expressed in cancer cells. ERα can be expressed also in CAFs; however, the role of ERα36 in CAFs is unknown. Methods: Four CAF cultures were isolated from chemotherapy-naïve BC patients and characterized for ERα36 expression and the NanoString gene expression panel using isolated RNA. Conditioned media from CAF cultures were used to assess the influence of CAFs on triple-negative breast cancer (TNBC) cells using a matrigel 3D culture assay. Results: We found that ERα36high CAFs significantly induced the branching of TNBC cells in vitro (p < 0.001). They also produced a set of pro-tumorigenic cytokines compared to ERα36low CAFs, among which hepatocyte growth factor (HGF) was the main inducer of TNBC cell invasive phenotype in vitro (p < 0.001). Tumor stroma rich in ERα36high CAFs was correlated with high Ki67 expression (p = 0.041) and tumor-associated macrophages markers (CD68 and CD163, p = 0.041 for both). HGF was found to be an unfavorable prognostic factor in TCGA database analysis (p = 0.03 for DFS and p = 0.04 for OS). Conclusions: Breast cancer-associated fibroblasts represent distinct subtypes based on ERα36 expression. We propose that ERα36high CAFs could account for an unfavorable prognosis for TNBC patients.

11.
Cells ; 10(12)2021 11 30.
Article in English | MEDLINE | ID: mdl-34943871

ABSTRACT

FGFR signalling is one of the most prominent pathways involved in cell growth and development as well as cancer progression. FGFR1 amplification occurs in approximately 20% of all squamous cell lung carcinomas (SCC), a predominant subtype of non-small cell lung carcinoma (NSCLC), indicating FGFR as a potential target for the new anti-cancer treatment. However, acquired resistance to this type of therapies remains a serious clinical challenge. Here, we investigated the NSCLC cell lines response and potential mechanism of acquired resistance to novel selective FGFR inhibitor CPL304110. We found that despite significant genomic differences between CPL304110-sensitive cell lines, their resistant variants were characterised by upregulated p38 expression/phosphorylation, as well as enhanced expression of genes involved in MAPK signalling. We revealed that p38 inhibition restored sensitivity to CPL304110 in these cells. Moreover, the overexpression of this kinase in parental cells led to impaired response to FGFR inhibition, thus confirming that p38 MAPK is a driver of resistance to a novel FGFR inhibitor. Taken together, our results provide an insight into the potential direction for NSCLC targeted therapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung/enzymology , Carcinoma, Non-Small-Cell Lung/pathology , Drug Resistance, Neoplasm , Lung Neoplasms/enzymology , Lung Neoplasms/pathology , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/metabolism , Biomarkers, Tumor/metabolism , Cell Cycle Checkpoints , Cell Line, Tumor , Cell Proliferation , Humans , Receptor, Fibroblast Growth Factor, Type 1/metabolism
12.
Anticancer Res ; 41(11): 5415-5423, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34732410

ABSTRACT

BACKGROUND/AIM: Antimicrobial peptides are part of the innate immune response, regulate inflammation and initiate acquired immunity. This study focused on theta-defensins that have been shown to have anticancer properties. MATERIALS AND METHODS: RTD-2 analogs were synthesized on a peptide synthesizer. Cell viability was estimated using the MTT test. Immunoprecipitation assay was conducted to determine the molecular partner of the [Ser3,7,12,16]-RTD-2 analog. RESULTS: Here, we present the biologically active [Ser3,7,12,16]-RTD-2 analog that selectively targets various types of breast cancer cells. Immunoprecipitation protein-protein interaction studies showed eleven proteins common to MDA-MB-231 and T47D cell lines. Taking into account their cellular location, it can be concluded that the synthesized peptide interacts mainly with nuclear proteins, which correlates with the obtained microscopic image. CONCLUSION: Proteins that interact strongly with the [Ser3,7,12,16]-RTD-2 analog are closely related to the proteasomal protein degradation pathway. As the activity of the ubiquitin-proteasome system is markedly increased in patients with breast cancer, it is likely that selective modulation of this system may be a useful method for breast cancer treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Defensins/pharmacology , Drug Design , Peptides, Cyclic/pharmacology , Proteasome Endopeptidase Complex/metabolism , Amino Acid Sequence , Antineoplastic Agents/chemistry , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Survival/drug effects , Defensins/chemistry , Female , Humans , Peptides, Cyclic/chemistry , Proteolysis , Structure-Activity Relationship
13.
Int J Mol Sci ; 22(9)2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33946793

ABSTRACT

For decades, local bone drug delivery systems have been investigated in terms of their application in regenerative medicine. Among them, inorganic polymers based on amorphous silica have been widely explored. In this work, we combined two types of amorphous silica: bioglass and doxycycline-loaded mesoporous silica MCM-41 into the form of spherical granules (pellets) as a bifunctional bone drug delivery system. Both types of silica were obtained in a sol-gel method. The drug adsorption onto the MCM-41 was performed via adsorption from concentrated doxycycline hydrochloride solution. Pellets were obtained on a laboratory scale using the wet granulation-extrusion-spheronization method and investigated in terms of physical properties, drug release, antimicrobial activity against Staphylococcus aureus, mineralization properties in simulated body fluid, and cytotoxicity towards human osteoblasts. The obtained pellets were characterized by satisfactory mechanical properties which eliminated the risk of pellets cracking during further investigations. The biphasic drug release from pellets was observed: burst stage (44% of adsorbed drug released within the first day) followed by prolonged release with zero-order kinetics (estimated time of complete drug release was 19 days) with maintained antimicrobial activity. The progressive biomimetic apatite formation on the surface of the pellets was observed. No cytotoxic effect of pellets towards human osteoblasts was noticed.


Subject(s)
Bone Substitutes/administration & dosage , Bone Substitutes/chemistry , Ceramics/chemistry , Drug Delivery Systems , Silicon Dioxide/administration & dosage , Silicon Dioxide/chemistry , Adsorption , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacokinetics , Bone Regeneration , Bone Substitutes/pharmacokinetics , Calcification, Physiologic , Calorimetry, Differential Scanning , Doxycycline/administration & dosage , Doxycycline/pharmacokinetics , Drug Carriers/administration & dosage , Drug Carriers/chemistry , Humans , In Vitro Techniques , Materials Testing , Microscopy, Electron, Scanning , Particle Size , Regenerative Medicine , Spectrometry, X-Ray Emission , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus/drug effects
14.
Front Oncol ; 11: 633410, 2021.
Article in English | MEDLINE | ID: mdl-33898310

ABSTRACT

Deregulation of fibroblast growth factor receptors (FGFRs) signaling, as a result of FGFR amplification, chromosomal translocation, or mutations, is involved in both initiation and progression of a wide range of human cancers. Clinical data demonstrating the dependence of cancer cells on FGFRs signaling clearly indicate these receptors as the molecular targets of anti-cancer therapies. Despite the increasing number of tyrosine kinase inhibitors (TKIs) being investigated in clinical trials, acquired resistance to these drugs poses a serious therapeutic problem. In this study, we focused on a novel pan-FGFR inhibitor-CPL304110, currently being investigated in phase I clinical trials in adults with advanced solid malignancies. We analyzed the sensitivity of 17 cell lines derived from cancers with aberrant FGFR signaling, i.e. non-small cell lung cancer, gastric and bladder cancer to CPL304110. In order to explore the mechanism of acquired resistance to this FGFR inhibitor, we developed from sensitive cell lines their variants resistant to CPL304110. Herein, for the first time we revealed that the process of acquired resistance to the novel FGFR inhibitor was associated with increased expression of MET in lung, gastric, and bladder cancer cells. Overexpression of MET in NCI-H1703, SNU-16, RT-112 cells as well as treatment with HGF resulted in the impaired response to inhibition of FGFR activity. Moreover, we demonstrated that cells with acquired resistance to FGFR inhibitor as well as cells overexpressing MET displayed enhanced migratory abilities what was accompanied with increased levels of Pyk2 expression. Importantly, inhibition of both MET and Pyk2 activity restored sensitivity to FGFR inhibition in these cells. Our results demonstrate that the HGF/MET-Pyk2 signaling axis confers resistance to the novel FGFR inhibitor, and this mechanism is common for lung, gastric, and bladder cancer cells. Our study suggests that targeting of MET/Pyk2 could be an approach to overcome resistance to FGFR inhibition.

15.
Diagnostics (Basel) ; 10(12)2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33297384

ABSTRACT

We present here an assessment of a 'real-life' value of automated machine learning algorithm (AI) for examination of immunohistochemistry for fibroblast growth factor receptor-2 (FGFR2) in breast cancer (BC). Expression of FGFR2 in BC (n = 315) measured using a certified 3DHistech CaseViewer/QuantCenter software 2.3.0. was compared to the manual pathologic assessment in digital slides (PA). Results revealed: (i) substantial interrater agreement between AI and PA for dichotomized evaluation (Cohen's kappa = 0.61); (ii) strong correlation between AI and PA H-scores (Spearman r = 0.85, p < 0.001); (iii) a small constant error and a significant proportional error (Passing-Bablok regression y = 0.51 × X + 29.9, p < 0.001); (iv) discrepancies in H-score in cases of extreme (strongest/weakest) or heterogeneous FGFR2 expression and poor tissue quality. The time of AI was significantly longer (568 h) than that of the pathologist (32 h). This study shows that the described commercial machine learning algorithm can reliably execute a routine pathologic assessment, however, in some instances, human expertise is essential.

16.
Neoplasia ; 22(11): 576-589, 2020 11.
Article in English | MEDLINE | ID: mdl-32980776

ABSTRACT

There are data to suggest that some ductal carcinoma in situ (DCIS) may evolve through an evolutionary bottleneck, where minor clones susceptible to the imposed selective pressure drive disease progression. Here, we tested the hypothesis that an impact of the inflammatory environment on DCIS evolution is HER2-dependent, conferring proliferative dominance of HER2-negative cells. In tissue samples, density of tumour-infiltrating immune cells (TIICs) was associated only with high tumour nuclear grade, but in 9% of predominantly HER2-negative cases, the presence of tumoral foci ('hot-spots') of basal-like cells with HIF1-α activity adjacent to the areas of dense stromal infiltration was noted. Results of in vitro analyses further demonstrated that IL-1ß and TNF-α as well as macrophage-conditioned medium triggered phosphorylation of NF-κB and subsequent upregulation of COX2 and HIF1-α, exclusively in HER2-negative cells. Treatment with both IL-1ß and TNF-α resulted in growth stimulation and inhibition of HER2-negative and HER2-positive cells, respectively. Moreover, ectopic overexpression of HIF1-α rescued HER2-positive cells from the negative effect of IL-1ß and TNF-α on cell growth. Our data provide novel insight into the molecular basis of HER2-dependent proliferation of DCIS cells and indicate the NF-κB/COX2 → HIF1-α signalling axis as a dominant mechanism of DCIS evolution induced by inflammatory microenvironment. Presented findings also highlight the clinical significance of heterogeneity of DCIS tumours and suggest that HIF1-α might be considered as a predictive marker of disease progression.


Subject(s)
Breast Neoplasms/etiology , Breast Neoplasms/metabolism , Carcinoma, Intraductal, Noninfiltrating/etiology , Carcinoma, Intraductal, Noninfiltrating/metabolism , Cyclooxygenase 2/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , NF-kappa B/metabolism , Biomarkers , Breast Neoplasms/pathology , Carcinoma, Intraductal, Noninfiltrating/pathology , Cell Line, Tumor , Cytokines/metabolism , Epithelial Cells/metabolism , Female , Gene Expression Regulation, Neoplastic , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Immunohistochemistry , Inflammation Mediators , Neoplasm Grading , Neoplasm Staging , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Signal Transduction , Tumor Microenvironment , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/pathology
17.
Cancers (Basel) ; 12(9)2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32971804

ABSTRACT

Interaction between fibroblast growth factor receptor 2 (FGFR2) and estrogen/progesterone receptors (ER/PR) affects resistance to anti-ER therapies, however the prognostic value of FGFR2 in breast cancer (BCa) remains largely unexplored. We have recently showed in vitro that FGFR2-mediated signaling alters PR activity and response to anti-ER treatment. Herein, prognostic significance of FGFR2 in BCa was evaluated in relation to both ER/PR protein status and a molecular signature designed to reflect PR transcriptional activity. FGFR2 was examined in 353 BCa cases using immunohistochemistry and Nanostring-based RNA quantification. FGFR2 expression was higher in ER+PR+ and ER+PR- compared to ER-PR- cases (p < 0.001). Low FGFR2 was associated with higher grade (p < 0.001), higher Ki67 proliferation index (p < 0.001), and worse overall and disease-free survival (HR = 2.34 (95% CI: 1.26-4.34), p = 0.007 and HR = 2.22 (95% CI: 1.25-3.93), p = 0.006, respectively). The poor prognostic value of low FGFR2 was apparent in ER+PR+, but not in ER+PR- patients, and it did not depend on the expression level of PR-dependent genes. Despite the functional link between FGFR2 and ER/PR revealed by preclinical studies, the data showed a link between FGFR2 expression and poor prognosis in BCa patients.

18.
Int J Pharm ; 588: 119718, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32750441

ABSTRACT

For decades, bone drug delivery systems dedicated for osteomyelitis treatment have been investigated as bifunctional materials that exhibit prolonged drug release and mineralization potential. Herein, composite-type pellets based on cefazolin-loaded amino-modified mesoporous silica SBA-15 and microwave-assisted hydroxyapatite were investigated as potential bone drug delivery system in vitro. Pellets were obtained by granulation, extrusion and spheronization methods in laboratory scale and studied in terms of physical properties, drug release, mineralization potential, antimicrobial activity and cytotoxicity towards human osteoblasts. The obtained pellets were characterized for hardness and friability which indicated the pellets durability during further investigations. Prolonged (5-day) release of cefazolin from pellets was observed. The pellets exhibited mineralization potential in simulated body fluid, i.e., a continuous layer of bone-like apatite was formed on the surface of pellets after 28 days of incubation. An antimicrobial assay of pellets revealed an antibacterial effect against Staphylococcus aureus strain during 6 days. No cytotoxic effects of pellets towards human osteoblasts were observed. The obtained results proved that proposed pellets appear to have potential applications as bone drug delivery systems.


Subject(s)
Anti-Bacterial Agents/chemistry , Cefazolin/chemistry , Drug Carriers , Silicon Dioxide/chemistry , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/toxicity , Cefazolin/administration & dosage , Cefazolin/toxicity , Cell Line , Delayed-Action Preparations , Drug Compounding , Drug Implants , Drug Liberation , Durapatite/chemistry , Hardness , Humans , Kinetics , Osteoblasts/drug effects , Osteomyelitis/drug therapy , Osteomyelitis/microbiology , Porosity , Silicon Dioxide/toxicity , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Surface Properties
19.
Drug Deliv Transl Res ; 10(2): 455-470, 2020 04.
Article in English | MEDLINE | ID: mdl-31820299

ABSTRACT

We reported the new biphasic composites of calcium phosphate and mesoporous silica material (CaP@MSi) in the form of powders and pellets as a potential bone drug delivery system for doxycycline hydrochloride (DOX). The CaP@MSi powders were synthesized by cationic surfactant-templating method. The effects of 10, 20, and 30% CaP content in the CaP@MSi powders on the molecular surface structure, the cytotoxicity against osteoblast cells in vitro, and the mineralization potential in simulated body fluid were investigated. The CaP@MSi characterized by the highest mineralization potential (30% CaP content) were used for DOX adsorption and pelletization process. The CaP which precipitated in the CaP@MSi composites was characterized as calcium-deficient with the Ca:P molar ratio between 1.0 and 1.2. The cytotoxicity assays demonstrated that the CaP content in MSi increases osteoblasts viability indicating the CaP@MSi (30% CaP content) as the most biocompatible. The combination of CaP and MSi was an effective strategy to improve the mineralization potential of parent material. Upon immersion in simulated body fluid, the CaP of composite converted into the bone-like apatite. The obtained pellets preserved the mineralization potential of CaP@MSi and provided the prolonged 5-day DOX release. The obtained biphasic CaP@MSi composites seem to have an application potential as bone-specific drug delivery system.


Subject(s)
Calcium Phosphates/chemistry , Doxycycline/pharmacology , Osteoblasts/cytology , Silicon Dioxide/chemistry , Adsorption , Cell Line , Cell Survival , Doxycycline/chemistry , Drug Delivery Systems , Drug Implants , Humans , Osteoblasts/drug effects , Porosity , Powders
20.
J Exp Clin Cancer Res ; 38(1): 230, 2019 May 29.
Article in English | MEDLINE | ID: mdl-31142340

ABSTRACT

Stromal stimuli mediated by growth factor receptors, leading to ligand-independent activation of steroid hormone receptors, have long been implicated in development of breast cancer resistance to endocrine therapy. Mutations in fibroblast growth factor receptor (FGFR) genes have been associated with a higher incidence and progression of breast cancer. Increasing evidence suggests that FGFR-mediated interaction between luminal invasive ductal breast carcinoma (IDC) and its microenvironment contributes to the progression to hormone-independence. Therapeutic strategies based on FGFR inhibitors hold promise for overcoming resistance to the ER-targeting treatment. A series of excellent reviews discuss a potential role of FGFR in development of IDC. Here, we provide a concise updated summary of existing literature on FGFR-mediated signalling with an emphasis on an interaction between FGFR and estrogen/progesterone receptors (ER/PR) in IDC. Focusing on the regulatory role of tumour microenvironment in the activity of steroid hormone receptors, we compile the available functional data on FGFRs-mediated signalling, as a fundamental mechanism of luminal IDC progression and failure of anti-ER treatment. We also highlight the translational value of the presented findings and summarize ongoing oncologic clinical trials investigating FGFRs inhibition in interventional studies in breast cancer.


Subject(s)
Breast Neoplasms/metabolism , Fibroblast Growth Factors/metabolism , Receptors, Fibroblast Growth Factor/metabolism , Receptors, Steroid/metabolism , Signal Transduction , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cancer-Associated Fibroblasts/metabolism , Female , Humans , Molecular Targeted Therapy , Receptors, Estrogen/metabolism , Receptors, Progesterone/metabolism , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...