Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38983362

ABSTRACT

This paper presents a reduced-order numerical modeling approach for the analysis of heat transfer in composite floor slabs with profiled steel decking exposed to fire effects. This approach represents the thick and thin portions of a composite slab with alternating strips of shell elements, using a layered thick-shell formulation that accounts for both in-plane and through-thickness heat transfer. To account for the tapered profile of the ribs, layered shell elements representing the thick portion of the slab adopt a linear reduction in the density of concrete within the depth in the rib. The specific heat of concrete in the rib is also proportionally reduced to indirectly consider the heat input through the web of the decking, because the reduced-order model considers thermal loading only on the upper and lower flanges of the decking. The optimal ratio of modified and actual specific heat of concrete in the rib is determined, depending on the ratio of the height of the upper continuous portion to the height of the rib. The reduced-order modeling approach is validated against experimental results.

2.
J Struct Eng (N Y N Y) ; 146(6)2020 Mar.
Article in English | MEDLINE | ID: mdl-38606053

ABSTRACT

This paper describes a reduced-order modeling approach for thermal and structural analysis of fire effects on composite slabs with profiled steel decking. The reduced-order modeling approach, which uses alternating strips of layered shell elements to represent the thick and thin portions of the slab, allows both thermal and structural analyses to be performed using a single model. The modeling approach accounts for the trapezoidal profile of the concrete in the ribs; the structural resistance provided by the steel decking, including the webs of the decking; and the orthotropic behavior of the decking, which provides greater resistance along the ribs than transverse to the ribs. The modeling approach is validated against experimental data from one-way composite slabs tested under ambient-temperature, a one-way composite slab tested under fire conditions, and a two-way composite slab tested under fire conditions. Both implicit and explicit solution schemes are evaluated for the structural analysis, and the results show that it is feasible to scale down the hours-long fire duration to a simulation time of seconds in an explicit dynamic analysis, without adversely affecting the accuracy of the results. The steel decking contributes significantly to the structural resistance at ambient temperature, but as expected, its contribution is found to decrease rapidly under fire exposure. The modeling approach can account for the location of reinforcing bars (i.e., at a specified depth in either the thick or thin portion of the slab), and it is found that reinforcement location can have a significant effect on the structural response, because heat transfer in the composite slab results in higher temperatures in the thin portions of the slab between the ribs.

3.
Fire Saf J ; 952018 Jan.
Article in English | MEDLINE | ID: mdl-38567118

ABSTRACT

This paper presents a systematic investigation of the influence of various parameters on the thermal performance of composite floor slabs with profiled steel decking exposed to fire effects. The investigation uses a detailed finite-element modeling approach that represents the concrete slab with solid elements and the steel decking with shell elements. After validating the modeling approach against experimental data, a parametric study is conducted to investigate the influence of thermal boundary conditions, thermal properties of concrete, and slab geometry on the temperature distribution within composite slabs. The results show that the fire resistance of composite slabs, according to the thermal insulation criterion, is generally governed by the maximum temperature occurring at the unexposed surface of the slab, rather than the average temperature. The emissivity of steel has a significant influence on the temperature distribution in composite slabs. A new temperature-dependent emissivity is proposed for the steel decking to give a better prediction of temperatures in the slab. The moisture content of the concrete has a significant influence on the temperature distribution, with an increment of 1 % in moisture content leading to an increase in the fire resistance of about 5 minutes. The height of the upper continuous portion of the slab is found to be the key geometrical factor influencing heat transfer through the slab, particularly for the thin portion of the slab. Heat transfer through the thick portion of the slab is also significantly affected by the height of the rib and the width at the top of the rib.

SELECTION OF CITATIONS
SEARCH DETAIL
...