Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Rep ; 13(1): 18539, 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37898632

ABSTRACT

This study compares the performance of artificial neural networks (ANN) trained by grey wolf optimization (GWO), biogeography-based optimization (BBO), and Levenberg-Marquardt (LM) to estimate the weight on bit (WOB). To this end, a dataset consisting of drilling depth, drill string rotational speed, rate of penetration, and volumetric flow rate as input variables and the WOB as a response is used to develop and validate the intelligent tools. The relevance test is applied to sort the strength of WOB dependency on the considered features. It was observed that the WOB has the highest linear correlation with the drilling depth and drill string rotational speed. After dividing the databank into the training and testing (4:1) parts, the proposed LM-ANN, GWO-ANN, and BBO-ANN ensembles are constructed. A sensitivity analysis is then carried out to find the most powerful structure of the models. Each model performs to reveal the relationship between the WOB and the mentioned independent factors. The performance of the models is finally evaluated by mean square error (MSE) and mean absolute error criteria. The results showed that both GWO and BBO algorithms effectively help the ANN to achieve a more accurate prediction of the WOB. Accordingly, the training MSEs decreased by 14.62% and 24.90%, respectively, by applying the GWO and BBO evolutionary algorithms. Meanwhile, these values were obtained as around 9.86% and 9.41% for the prediction error of the ANN in the testing phase. It was also deduced that the BBO performs more efficiently than the other technique. The effect of input variables dimension on the accuracy and training time of the BBO-ANN clarified that the most accurate WOB predictions are achieved when the model constructs with all four input variables instead of utilizing either three or two of them with the highest linear correlation. It was also observed that the training stage of the BBO-ANN model with four input variables needs a little more computational time than its training with either two or three variables. Finally, the accuracy of the BBO-ANN model for the WOB prediction has been compared with the multiple linear regression, support vector regression, adaptive neuro-fuzzy inference systems, and group method of data handling. The statistical accuracy analysis confirmed that the BBO-ANN is more accurate than the other checked techniques.

3.
Sci Rep ; 13(1): 4266, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36918606

ABSTRACT

This study applies a hybridized wavelet transform-artificial neural network (WT-ANN) model to simulate the acetone detecting ability of the Indium oxide/Iron oxide (In2O3/Fe2O3) nanocomposite sensors. The WT-ANN has been constructed to extract the sensor resistance ratio (SRR) in the air with respect to the acetone from the nanocomposite chemistry, operating temperature, and acetone concentration. The performed sensitivity analyses demonstrate that a single hidden layer WT-ANN with nine nodes is the highest accurate model for automating the acetone-detecting ability of the In2O3/Fe2O3 sensors. Furthermore, the genetic algorithm has fine-tuned the shape-related parameters of the B-spline wavelet transfer function. This model accurately predicts the SRR of the 119 nanocomposite sensors with a mean absolute error of 0.7, absolute average relative deviation of 10.12%, root mean squared error of 1.14, and correlation coefficient of 0.95813. The In2O3-based nanocomposite with a 15 mol percent of Fe2O3 is the best sensor for detecting acetone at wide temperatures and concentration ranges. This type of reliable estimator is a step toward fully automating the gas-detecting ability of In2O3/Fe2O3 nanocomposite sensors.

4.
Molecules ; 27(19)2022 Oct 03.
Article in English | MEDLINE | ID: mdl-36235078

ABSTRACT

This study correlated biomass heat capacity (Cp) with the chemistry (sulfur and ash content), crystallinity index, and temperature of various samples. A five-parameter linear correlation predicted 576 biomass Cp samples from four different origins with the absolute average relative deviation (AARD%) of ~1.1%. The proportional reduction in error (REE) approved that ash and sulfur contents only enlarge the correlation and have little effect on the accuracy. Furthermore, the REE showed that the temperature effect on biomass heat capacity was stronger than on the crystallinity index. Consequently, a new three-parameter correlation utilizing crystallinity index and temperature was developed. This model was more straightforward than the five-parameter correlation and provided better predictions (AARD = 0.98%). The proposed three-parameter correlation predicted the heat capacity of four different biomass classes with residual errors between -0.02 to 0.02 J/g∙K. The literature related biomass Cp to temperature using quadratic and linear correlations, and ignored the effect of the chemistry of the samples. These quadratic and linear correlations predicted the biomass Cp of the available database with an AARD of 39.19% and 1.29%, respectively. Our proposed model was the first work incorporating sample chemistry in biomass Cp estimation.


Subject(s)
Biocompatible Materials , Hot Temperature , Biomass , Sulfur , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...