Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Front Immunol ; 15: 1352022, 2024.
Article in English | MEDLINE | ID: mdl-38698856

ABSTRACT

The complement system is an innate immune mechanism against microbial infections. It involves a cascade of effector molecules that is activated via classical, lectin and alternative pathways. Consequently, many pathogens bind to or incorporate in their structures host negative regulators of the complement pathways as an evasion mechanism. Factor H (FH) is a negative regulator of the complement alternative pathway that protects "self" cells of the host from non-specific complement attack. FH has been shown to bind viruses including human influenza A viruses (IAVs). In addition to its involvement in the regulation of complement activation, FH has also been shown to perform a range of functions on its own including its direct interaction with pathogens. Here, we show that human FH can bind directly to IAVs of both human and avian origin, and the interaction is mediated via the IAV surface glycoprotein haemagglutinin (HA). HA bound to common pathogen binding footprints on the FH structure, complement control protein modules, CCP 5-7 and CCP 15-20. The FH binding to H1 and H3 showed that the interaction overlapped with the receptor binding site of both HAs, but the footprint was more extensive for the H3 HA than the H1 HA. The HA - FH interaction impeded the initial entry of H1N1 and H3N2 IAV strains but its impact on viral multicycle replication in human lung cells was strain-specific. The H3N2 virus binding to cells was significantly inhibited by preincubation with FH, whereas there was no alteration in replicative rate and progeny virus release for human H1N1, or avian H9N2 and H5N3 IAV strains. We have mapped the interaction between FH and IAV, the in vivo significance of which for the virus or host is yet to be elucidated.


Subject(s)
Complement Factor H , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A virus , Influenza, Human , Protein Binding , Humans , Complement Factor H/metabolism , Complement Factor H/immunology , Animals , Influenza, Human/immunology , Influenza, Human/virology , Influenza, Human/metabolism , Influenza A virus/immunology , Influenza A virus/physiology , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Binding Sites , Influenza in Birds/virology , Influenza in Birds/immunology , Influenza in Birds/metabolism , Birds/virology , Host-Pathogen Interactions/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H9N2 Subtype/immunology
2.
Front Immunol ; 14: 1197746, 2023.
Article in English | MEDLINE | ID: mdl-37744374

ABSTRACT

Introduction: Infectious Bursal Disease Virus (IBDV) causes immunosuppression in chickens. While B-cell destruction is the main cause of humoral immunosuppression, bursal T cells from IBDV-infected birds have been reported to inhibit the mitogenic response of splenocytes, indicating that some T cell subsets in the infected bursa have immunomodulatory activities. CD4+CD25+TGFß+ cells have been recently described in chickens that have immunoregulatory properties and play a role in the pathogenesis of Marek's Disease Virus. Methods: To evaluate if CD4+CD25+TGFß+ cells infiltrated the bursa of Fabricius (BF) following IBDV infection, and influenced the outcome of infection, birds were inoculated at either 2 days or 2 weeks of age with vaccine strain (228E), classic field strain (F52/70), or PBS (mock), and bursal cell populations were quantified by flow cytometry. Results: Both 228E and F52/70 led to atrophy of the BF, a significant reduction of Bu1+-B cells, and a significant increase in CD4+ and CD8α+ T cells in the BF, but only F52/70 caused suppression of immune responses to a test antigen in younger birds, and clinical signs in older birds. Virus was cleared from the BF more rapidly in younger birds than older birds. An infiltration of CD4+CD25+T cells into the BF, and elevated expression of bursal TGFß-1+ mRNA was observed at all time points following infection, irrespective of the strain or age of the birds, but CD4+TGFß+cells and CD4+CD25+TGFß+ cells only appeared in the BF at 28 dpi in younger birds. In older birds, CD4+TGFß+ cells and CD4+CD25+TGFß+ cells were present at earlier time points, from 7dpi following 228E infection, and from 14 and 28 dpi following F52/70 infection, respectively. Discussion: Our data suggest that an earlier infiltration of CD4+TGFß+ cells into the BF correlated with a delayed clearance of virus. However, the influx of CD4+TGFß+ cells and CD4+CD25+TGFß+ into the BF did not correlate with increased pathogenicity, or immunosuppression.


Subject(s)
Infectious bursal disease virus , Animals , Bursa of Fabricius , Chickens , Immunosuppression Therapy , Transforming Growth Factor beta
3.
Emerg Microbes Infect ; 12(2): 2244091, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37526446

ABSTRACT

High pathogenicity avian influenza (HPAI) H5N1 is a subtype of the influenza A virus primarily found in birds. The subtype emerged in China in 1996 and has spread globally, causing significant morbidity and mortality in birds and humans. In Cambodia, a lethal case was reported in February 2023 involving an 11-year-old girl, marking the first human HPAI H5N1 infection in the country since 2014. This research examined the zoonotic potential of the human H5N1 isolate, A/Cambodia/NPH230032/2023 (KHM/23), by assessing its receptor binding, fusion pH, HA thermal stability, and antigenicity. Results showed that KHM/23 exhibits similar receptor binding and antigenicity as the early clade 2.3.2.1c HPAI H5N1 strain, and it does not bind to human-like receptors. Despite showing limited zoonotic risk, the increased thermal stability and reduced pH of fusion in KHM/23 indicate a potential threat to poultry, emphasizing the need for vigilant monitoring.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza A virus , Influenza in Birds , Influenza, Human , Animals , Female , Humans , Child , Influenza in Birds/epidemiology , Hemagglutinins , Influenza, Human/epidemiology , Cambodia/epidemiology
4.
Emerg Microbes Infect ; 12(1): 2172965, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36714929

ABSTRACT

Since the first human case in 2013, H7N9 avian influenza viruses (AIVs) have caused more than 1500 human infections with a mortality rate of approximately 40%. Despite large-scale poultry vaccination regimes across China, the H7N9 AIVs continue to persist and evolve rapidly in poultry. Recently, several strains of H7N9 AIVs have been isolated and shown the ability to escape vaccine-induced immunity. To assess the zoonotic risk of the recent H7N9 AIV isolates, we rescued viruses with hemagglutinin (HA) and neuraminidase (NA) from these H7N9 AIVs and six internal segments from PR8 virus and characterized their receptor binding, pH of fusion, thermal stability, plaque morphology and in ovo virus replication. We also assessed the cross-reactivity of the viruses with human monoclonal antibodies (mAbs) against H7N9 HA and ferret antisera against H7N9 AIV candidate vaccines. The H7N9 AIVs from the early epidemic waves had dual sialic acid receptor binding characteristics, whereas the more recent H7N9 AIVs completely lost or retained only weak human sialic acid receptor binding. Compared with the H7N9 AIVs from the first epidemic wave, the 2020/21 viruses formed larger plaques in Madin-Darby canine kidney (MDCK) cells and replicated to higher titres in ovo, demonstrating increased acid stability but reduced thermal stability. Further analysis showed that these recent H7N9 AIVs had poor cross-reactivity with the human mAbs and ferret antisera, highlighting the need to update the vaccine candidates. To conclude, the newly emerged H7N9 AIVs showed characteristics of typical AIVs, posing reduced zoonotic risk but a heightened threat for poultry.


Subject(s)
Influenza A Virus, H7N9 Subtype , Influenza in Birds , Influenza, Human , Animals , Dogs , Humans , Ferrets , Hemagglutinins , Poultry , Risk Assessment , Immune Sera , Hemagglutinin Glycoproteins, Influenza Virus
5.
J Virol ; 97(1): e0143122, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36541801

ABSTRACT

Since 2013, H7N9 avian influenza viruses (AIVs) have caused more than 1,500 human infections and the culling of millions of poultry. Despite large-scale poultry vaccination, H7N9 AIVs continue to circulate among poultry in China and pose a threat to human health. Previously, we isolated and generated four monoclonal antibodies (mAbs) derived from humans naturally infected with H7N9 AIV. Here, we investigated the hemagglutinin (HA) epitopes of H7N9 AIV targeted by these mAbs (L3A-44, K9B-122, L4A-14, and L4B-18) using immune escape studies. Our results revealed four key antigenic epitopes at HA amino acid positions 125, 133, 149, and 217. The mutant H7N9 viruses representing escape mutations containing an alanine-to-threonine substitution at residue 125 (A125T), a glycine-to-glutamic acid substitution at residue 133 (G133E), an asparagine-to-aspartic acid substitution at residue 149 (N149D), or a leucine-to-glutamine substitution at residue 217 (L217Q) showed reduced or completely abolished cross-reactivity with the mAbs, as measured by a hemagglutination inhibition (HI) assay. We further assessed the potential risk of these mutants to humans should they emerge following mAb treatment by measuring the impact of these HA mutations on virus fitness and evasion of host adaptive immunity. Here, we showed that the L4A-14 mAb had broad neutralizing capabilities, and its escape mutant N149D had reduced viral stability and human receptor binding and could be neutralized by both postinfection and antigen-induced sera. Therefore, the L4A-14 mAb could be a therapeutic candidate for H7N9 AIV infection in humans and warrants further investigation for therapeutic applications. IMPORTANCE Avian influenza virus (AIV) H7N9 continues to circulate and evolve in birds, posing a credible threat to humans. Antiviral drugs have proven useful for the treatment of severe influenza infections in humans; however, concerns have been raised as antiviral-resistant mutants have emerged. Monoclonal antibodies (mAbs) have been studied for both prophylactic and therapeutic applications in infectious disease control and have demonstrated great potential. For example, mAb treatment has significantly reduced the risk of people developing severe disease with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In addition to the protection efficiency, we should also consider the potential risk of the escape mutants generated by mAb treatment to public health by assessing their viral fitness and potential to compromise host adaptive immunity. Considering these parameters, we assessed four human mAbs derived from humans naturally infected with H7N9 AIV and showed that the mAb L4A-14 displayed potential as a therapeutic candidate.


Subject(s)
Influenza A Virus, H7N9 Subtype , Influenza, Human , Animals , Humans , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Viral/immunology , Antibodies, Viral/therapeutic use , Epitopes , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A Virus, H7N9 Subtype/immunology , Influenza, Human/immunology , Influenza, Human/therapy , Immune Evasion/genetics , Mutation
6.
Diagnostics (Basel) ; 12(12)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36553092

ABSTRACT

(1) Background: The aim of this study was to produce in-house ELISAs which can be used to determine SARS-CoV-2-specific antibody levels directed against the spike protein (S), the S1 subunit of S and the receptor binding domain (RBD) of S in SARS-CoV-2 vaccinated and infected humans. (2) Methods: Three in-house ELISAs were developed by using recombinant proteins of SARS-CoV-2, namely the S, S1 and RBD proteins. Specificity and sensitivity evaluations of these tests were performed using sera from SARS-CoV-2-infected (n = 70) and SARS-CoV-2-vaccinated (n = 222; CoronaVac vaccine) humans in Istanbul, Turkey. The analyses for the presence of SARS-CoV-2-specific antibodies were performed using the in-house ELISAs, a commercial ELISA (Abbott) and a commercial surrogate virus neutralization test (sVNT). We also analyzed archival human sera (n = 50) collected before the emergence of COVID-19 cases in Turkey. (3) Results: The sensitivity of the in-house S, S1 and RBD ELISAs was found to be 88.44, 90.17 and 95.38%, while the specificity was 72.27, 89.08 and 89.92%, respectively, when compared to the commercial SARS-CoV-2 antibody test kit. The area under curve (AUC) values were 0.777 for the in-house S ELISA, 0.926 for the S1 ELISA, and 0.959 for the RBD ELISA. The kappa values were 0.62, 0.79 and 0.86 for the S, S1 and RBD ELISAs, respectively. (4) Conclusions: The in-house S1 and RBD ELISAs developed in this study have acceptable performance characteristics in terms of sensitivity, specificity, AUC and kappa values. In particular, the RBD ELISA seems viable to determine SARS-CoV-2-specific antibody levels, both in infected and vaccinated people, and help mitigate SARS-CoV-2 outbreaks and spread.

8.
J Virol ; 96(22): e0129022, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36342296

ABSTRACT

H9N2 avian influenza viruses (AIVs) have donated internal gene segments during the emergence of zoonotic AIVs, including H7N9. We used reverse genetics to generate A/Anhui/1/13 (H7N9) and three reassortant viruses (2:6 H7N9) which contained the hemagglutinin and neuraminidase from Anhui/13 (H7N9) and the six internal gene segments from H9N2 AIVs belonging to (i) G1 subgroup 2, (ii) G1 subgroup 3, or (iii) BJ94 lineages, enzootic in different regions throughout Asia. Infection of chickens with the 2:6 H7N9 containing G1-like H9N2 internal genes conferred attenuation in vivo, with reduced shedding and transmission to contact chickens. However, possession of BJ94-like H9N2 internal genes resulted in more rapid transmission and significantly elevated cloacal shedding compared to the parental Anhui/13 H7N9. In vitro analysis showed that the 2:6 H7N9 with BJ94-like internal genes had significantly increased replication compared to the Anhui/13 H7N9 in chicken cells. In vivo coinfection experiments followed, where chickens were coinfected with pairs of Anhui/13 H7N9 and a 2:6 H7N9 reassortant. During ensuing transmission events, the Anhui/13 H7N9 virus outcompeted 2:6 H7N9 AIVs with internal gene segments of BJ94-like or G1-like H9N2 viruses. Coinfection did lead to the emergence of novel reassortant genotypes that were transmitted to contact chickens. Some of the reassortant viruses had a greater replication in chicken and human cells compared to the progenitors. We demonstrated that the internal gene cassette determines the transmission fitness of H7N9 viruses in chickens, and the reassortment events can generate novel H7N9 genotypes with increased virulence in chickens and enhanced zoonotic potential. IMPORTANCE H9N2 avian influenza viruses (AIVs) are enzootic in poultry in different geographical regions. The internal genes of these viruses can be exchanged with other zoonotic AIVs, most notably the A/Anhui/1/2013-lineage H7N9, which can give rise to new virus genotypes with increased veterinary, economic and public health threats to both poultry and humans. We investigated the propensity of the internal genes of H9N2 viruses (G1 or BJ94) in the generation of novel reassortant H7N9 AIVs. We observed that the internal genes of H7N9 which were derivative of BJ94-like H9N2 virus have a fitness advantage compared to those from the G1-like H9N2 viruses for efficient transmission among chickens. We also observed the generation of novel reassortant viruses during chicken transmission which infected and replicated efficiently in human cells. Therefore, such emergent reassortant genotypes may pose an elevated zoonotic threat.


Subject(s)
Coinfection , Influenza A Virus, H7N9 Subtype , Influenza A Virus, H9N2 Subtype , Influenza in Birds , Influenza, Human , Animals , Humans , Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H9N2 Subtype/genetics , Chickens , Reassortant Viruses/genetics , Poultry , Phylogeny
9.
Viruses ; 14(10)2022 10 13.
Article in English | MEDLINE | ID: mdl-36298799

ABSTRACT

Newcastle Disease Virus (NDV) genotype VII is a highly pathogenic Orthoavulavirus that has caused multiple outbreaks among poultry in Egypt since 2011. This study aimed to observe the prevalence and genetic diversity of NDV prevailing in domestic and wild birds in Egyptian governorates. A total of 37 oropharyngeal swabs from wild birds and 101 swabs from domestic bird flocks including chickens, ducks, turkeys, and pelicans, were collected from different geographic regions within 13 governorates during 2019-2020. Virus isolation and propagation via embryonated eggs revealed 91 swab samples produced allantoic fluid containing haemagglutination activity, suggestive of virus presence. The use of RT-PCR targeted to the F gene successfully detected NDV in 85 samples. The geographical prevalence of NDV was isolated in 12 governorates in domestic birds, migratory, and non-migratory wild birds. Following whole genome sequencing, we assembled six NDV genome sequences (70-99% of genome coverage), including five full F gene sequences. All NDV strains carried high virulence, with phylogenetic analysis revealing that the strains belonged to class II within genotype VII.1.1. The genetically similar yet geographically distinct virulent NDV isolates in poultry and a wild bird may allude to an external role contributing to the dissemination of NDV in poultry populations across Egypt. One such contribution may be the migratory behaviour of wild birds; however further investigation must be implemented to support the findings of this study. Additionally, continued genomic surveillance in both wild birds and poultry would be necessary for monitoring NDV dissemination and genetic diversification across Egypt, with the aim of controlling the disease and protecting poultry production.


Subject(s)
Newcastle Disease , Poultry Diseases , Animals , Newcastle Disease/epidemiology , Poultry , Egypt/epidemiology , Phylogeny , Prevalence , Chickens , Newcastle disease virus , Animals, Wild , Genotype , Poultry Diseases/epidemiology , Animals, Domestic
10.
NPJ Vaccines ; 7(1): 33, 2022 Mar 03.
Article in English | MEDLINE | ID: mdl-35241682

ABSTRACT

Maternally derived antibodies (MDAs) are important for protecting chickens against pathogens in the neonatal stage however, they often interfere with vaccine performance. Here, we investigated the effects of MDAs on a targeted antigen delivery vaccine (TADV), which is developed by conjugating H9 subtype avian influenza virus haemagglutinin (HA) antigen to single chain fragment variable (scFv) antibodies specific for the chicken antigen presenting cell receptor CD83. Groups of 1-day-old chickens carrying high levels of MDAs (MDA++) and 14-day old chickens carrying medium levels of MDAs (MDA+) were immunised with TADV (rH9HA-CD83 scFv), untargeted rH9HA or inactivated H9N2 vaccines. Immunogenicity in these vaccinated chickens was compared using haemagglutination inhibition (HI) and enzyme-linked immunosorbent assays (ELISA). The results showed that the TADV (rH9HA-CD83 scFv) induced significantly higher levels of H9HA-specific antibody titres compared to the untargeted rH9HA and inactivated H9N2 vaccines in MDA++ and MDA+ chickens. Overall, the data demonstrates immune responses induced by TADV are not affected by the MDA in chickens.

11.
J Virol ; 96(5): e0185621, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35019727

ABSTRACT

An H7N9 low-pathogenicity avian influenza virus (LPAIV) emerged in 2013 through genetic reassortment between H9N2 and other LPAIVs circulating in birds in China. This virus causes inapparent clinical disease in chickens, but zoonotic transmission results in severe and fatal disease in humans. To examine a natural reassortment scenario between H7N9 and G1 lineage H9N2 viruses predominant in the Indian subcontinent, we performed an experimental coinfection of chickens with A/Anhui/1/2013/H7N9 (Anhui/13) virus and A/Chicken/Pakistan/UDL-01/2008/H9N2 (UDL/08) virus. Plaque purification and genotyping of the reassortant viruses shed via the oropharynx of contact chickens showed H9N2 and H9N9 as predominant subtypes. The reassortant viruses shed by contact chickens also showed selective enrichment of polymerase genes from H9N2 virus. The viable "6+2" reassortant H9N9 (having nucleoprotein [NP] and neuraminidase [NA] from H7N9 and the remaining genes from H9N2) was successfully shed from the oropharynx of contact chickens, plus it showed an increased replication rate in human A549 cells and a significantly higher receptor binding to α2,6 and α2,3 sialoglycans compared to H9N2. The reassortant H9N9 virus also had a lower fusion pH, replicated in directly infected ferrets at similar levels compared to H7N9 and transmitted via direct contact. Ferrets exposed to H9N9 via aerosol contact were also found to be seropositive, compared to H7N9 aerosol contact ferrets. To the best of our knowledge, this is the first study demonstrating that cocirculation of H7N9 and G1 lineage H9N2 viruses could represent a threat for the generation of novel reassortant H9N9 viruses with greater virulence in poultry and a zoonotic potential. IMPORTANCE We evaluated the consequences of reassortment between the H7N9 and the contemporary H9N2 viruses of the G1 lineage that are enzootic in poultry across the Indian subcontinent and the Middle East. Coinfection of chickens with these viruses resulted in the emergence of novel reassortant H9N9 viruses with genes derived from both H9N2 and H7N9 viruses. The "6+2" reassortant H9N9 (having NP and NA from H7N9) virus was shed from contact chickens in a significantly higher proportion compared to most of the reassortant viruses, showed significantly increased replication fitness in human A549 cells, receptor binding toward human (α2,6) and avian (α2,3) sialic acid receptor analogues, and the potential to transmit via contact among ferrets. This study demonstrated the ability of viruses that already exist in nature to exchange genetic material, highlighting the potential emergence of viruses from these subtypes with zoonotic potential.


Subject(s)
Coinfection , Influenza A Virus, H7N9 Subtype , Influenza A Virus, H9N2 Subtype , Influenza in Birds , Reassortant Viruses , Animals , Chickens , Coinfection/veterinary , Ferrets , Humans , Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H9N2 Subtype/genetics , Influenza in Birds/virology , Influenza, Human , Phylogeny , Poultry , Reassortant Viruses/genetics , Reassortant Viruses/pathogenicity
12.
Front Immunol ; 13: 1052297, 2022.
Article in English | MEDLINE | ID: mdl-36685492

ABSTRACT

Microbial colonisation is paramount to the normal development of the immune system, particularly at mucosal sites. However, the relationships between the microbiome and the adaptive immune repertoire have mostly been explored in rodents and humans. Here, we report a high-throughput sequencing analysis of the chicken TCRß repertoire and the influences of microbial colonisation on tissue-resident TCRß+ cells. The results reveal that the microbiome is an important driver of TCRß diversity in both intestinal tissues and the bursa of Fabricius, but not in the spleen. Of note, public TCRß sequences (shared across individuals) make a substantial contribution to the repertoire. Additionally, different tissues exhibit biases in terms of their V family and J gene usage, and these effects were influenced by the gut-associated microbiome. TCRß clonal expansions were identified in both colonised and germ-free birds, but differences between the groups were indicative of an influence of the microbiota. Together, these findings provide an insight into the avian adaptive immune system and the influence of the microbiota on the TCRß repertoire.


Subject(s)
Chickens , Immune System , Humans , Animals , Intestines
13.
Vector Borne Zoonotic Dis ; 21(11): 892-899, 2021 11.
Article in English | MEDLINE | ID: mdl-34748405

ABSTRACT

West Nile fever is a vector-borne viral disease affecting animals and humans causing significant health and economic problems globally. This study was aimed at investigating circulating West Nile virus (WNV) strains in free-ranging corvids in Istanbul, Turkey. Brain, liver, and kidney were collected from corvids (n = 34) between June 2019 and April 2020 and analyzed for the presence of WNV-specific RNA by quantitative RT-PCR. In addition, histopathologic and immunohistochemical examinations were also performed. Samples found to be positive by qRT-PCR were partially sequenced. WNV-specific RNA was detected in 8 of 34 corvids analyzed, which included 7 hooded crows (Corvus cornix) and 1 Eurasian magpie (Pica pica). Phylogenetic analysis based on partial WNV sequences from the 8 WNV-positive corvids identified in this study revealed that all sequences clustered within the WNV lineage-2; they were at least 97% homologues to WNV lineage-2 sequences from Slovakia, Italy, Czechia, Hungary, Senegal, Austria, Serbia, Greece, Bulgaria, and Germany. WNV sequences showed a divergence (87.94-94.46%) from sequences reported from Romania, Central African Republic, South Africa, Madagascar, Israel, and Cyprus, which clustered into a different clade of WNV lineage-2. Common histopathologic findings of WNV-positive corvids included lymphoplasmacytic hepatitis, myocarditis, and splenitis. The liver and heart were found to be the tissues most consistently positive for WNV-specific antigen by immunohistochemistry, followed by the kidney and brain. This study demonstrates for the first time the existence of WNV virus belonging to the genetic lineage-2 in resident corvids in Istanbul, Turkey. We hypothesize that the WNV strains circulating in Istanbul are possibly the result of a spillover event from Europe. Since WNV is a zoonotic pathogen transmitted by mosquito vectors, the emergence of WNV in Istanbul also poses a risk to humans and other susceptible animals in this densely populated city and needs to be addressed by animal and public health authorities.


Subject(s)
West Nile Fever , West Nile virus , Animals , Phylogeny , Serbia , Turkey/epidemiology , West Nile Fever/epidemiology , West Nile Fever/veterinary , West Nile virus/genetics
14.
Front Vet Sci ; 8: 707368, 2021.
Article in English | MEDLINE | ID: mdl-34712718

ABSTRACT

Recent studies demonstrated that domestic cats can be naturally and experimentally infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). This study was performed to investigate the presence of SARS-CoV-2-specific antibodies within the domestic cat population in Istanbul, Turkey, before the coronavirus disease 2019 (COVID-19) and during the COVID-19 pandemic. Overall, from 155 cat sera analyzed, 26.45% (41/155) tested positive in the spike protein-ELISA (S-ELISA), 28.38% (44/155) in the receptor-binding domain-ELISA (RBD-ELISA), and 21.9% (34/155) in both, the S- and RBD-ELISAs. Twenty-seven of those were also positive for the presence of antibodies to feline coronavirus (FCoV). Among the 34 SARS-CoV-2-positive sera, three of those were positive on serum neutralization assay. Six of the 30 cats before COVID-19 and 28 of the 125 cats during COVID-19 were found to be seropositive. About 20% of ELISA-positive cats exhibited mainly respiratory, gastrointestinal, and renal signs and skin lesions. Hematocrit, hemoglobin, white blood cells, lymphocyte, and platelet numbers were low in about 30% of ELISA-positive cats. The number of neutrophils and monocytes were above normal values in about 20% of ELISA-positive cats. The liver enzyme alanine aminotransferase levels were high in 23.5% ELISA-positive cats. In conclusion, this is the first report describing antibodies specific to SARS-CoV-2 antigens (S and RBD) in cats in Istanbul, Turkey, indicating the risk for domestic cats to contract SARS-CoV-2 from owners and/or household members with COVID-19. This study and others show that COVID-19-positive pet owners should limit their contact with companion animals and that pets with respiratory signs should be monitored for SARS-CoV-2 infections.

15.
Vaccines (Basel) ; 9(10)2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34696290

ABSTRACT

Identification of a universal influenza vaccine candidate has remained a global challenge for both humans and animals. This study describes an approach that uses consensus sequence building to generate chimeric HAs (cHAs): two resultant H1 HA-based chimeras comprising of conserved sequences (within several areas spanning the head and stalk regions) of H1 and H5 or H9 HAs. These cHAs expressed in Drosophila cells (S2) were used to immunize mice. All immunized mice were protected from an infectious H1 virus challenge. Seroconverted mice sera to the H1 cHAs inhibited both the challenge virus and an H5 virus isolate by haemagglutination inhibition (HI) assay. These findings further emphasize that cHAs induce cross-reactive antibodies against conserved areas of both head and stalk regions of the seasonal influenza A (H1N1) pdm09 virus' HA and holds potential for further development of a universal influenza vaccine.

16.
Vaccines (Basel) ; 9(7)2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34358200

ABSTRACT

Improving the immunogenicity and protective efficacy of vaccines is critical to reducing disease impacts. One strategy used to enhance the immunogenicity of vaccines is the selective delivery of protective antigens to the antigen presenting cells (APCs). In this study, we have developed a targeted antigen delivery vaccine (TADV) system by recombinantly fusing the ectodomain of hemagglutinin (HA) antigen of H9N2 influenza A virus to single chain fragment variable (scFv) antibodies specific for the receptors expressed on chicken APCs; Dec205 and CD11c. Vaccination of chickens with TADV containing recombinant H9HA Foldon-Dec205 scFv or H9HA Foldon-CD11c scFv proteins elicited faster (as early as day 6 post primary vaccination) and higher anti-H9HA IgM and IgY, haemagglutination inhibition, and virus neutralisation antibodies compared to the untargeted H9HA protein. Comparatively, CD11c scFv conjugated H9HA protein showed higher immunogenic potency compared to Dec205 scFv conjugated H9HA protein. The higher immune potentiating ability of CD11c scFv was also reflected in ex-vivo chicken splenocyte stimulation assay, whereby H9HA Foldon-CD11c scFv induced higher levels of cytokines (IFNγ, IL6, IL1ß, and IL4) compared to H9HA Foldon-Dec205 scFv. Overall, the results conclude that TADV could be a better alternative to the currently available inactivated virus vaccines.

17.
NPJ Vaccines ; 6(1): 90, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34267228

ABSTRACT

The immunogenicity and protective efficacy of vaccines can be enhanced by the selective delivery of antigens to the antigen-presenting cells (APCs). In this study, H9N2 avian influenza virus haemagglutinin (HA) antigen, was targeted by fusing it to single-chain fragment variable (scFv) antibodies specific to CD83 receptor expressed on chicken APCs. We observed an increased level of IFNγ, IL6, IL1ß, IL4, and CxCLi2 mRNA upon stimulation of chicken splenocytes ex vivo by CD83 scFv targeted H9HA. In addition, CD83 scFv targeted H9HA induced higher serum haemagglutinin inhibition activity and virus neutralising antibodies compared to untargeted H9HA, with induction of antibodies as early as day 6 post primary vaccination. Furthermore, chickens vaccinated with CD83 scFv targeted H9HA showed reduced H9N2 challenge virus shedding compared to untargeted H9HA. These results suggest that targeting antigens to CD83 receptors could improve the efficacy of poultry vaccines.

18.
J Gen Virol ; 102(3)2021 03.
Article in English | MEDLINE | ID: mdl-33544070

ABSTRACT

Influenza A viruses encode several accessory proteins that have host- and strain-specific effects on virulence and replication. The accessory protein PA-X is expressed due to a ribosomal frameshift during translation of the PA gene. Depending on the particular combination of virus strain and host species, PA-X has been described as either acting to reduce or increase virulence and/or virus replication. In this study, we set out to investigate the role PA-X plays in H9N2 avian influenza viruses, focusing on the natural avian host, chickens. We found that the G1 lineage A/chicken/Pakistan/UDL-01/2008 (H9N2) PA-X induced robust host shutoff in both mammalian and avian cells and increased virus replication in mammalian, but not avian cells. We further showed that PA-X affected embryonic lethality in ovo and led to more rapid viral shedding and widespread organ dissemination in vivo in chickens. Overall, we conclude PA-X may act as a virulence factor for H9N2 viruses in chickens, allowing faster replication and wider organ tropism.


Subject(s)
Influenza A Virus, H9N2 Subtype/metabolism , Influenza in Birds/virology , Influenza, Human/virology , Repressor Proteins/metabolism , Viral Nonstructural Proteins/metabolism , Virulence Factors/metabolism , Animals , Cell Line , Chickens , Cytokines/genetics , Cytokines/immunology , Humans , Influenza A Virus, H9N2 Subtype/genetics , Influenza A Virus, H9N2 Subtype/pathogenicity , Influenza in Birds/genetics , Influenza in Birds/immunology , Influenza, Human/genetics , Influenza, Human/immunology , Lung/immunology , Lung/virology , Mice , Repressor Proteins/genetics , Viral Nonstructural Proteins/genetics , Virulence Factors/genetics , Virus Replication , Virus Shedding
19.
Emerg Microbes Infect ; 9(1): 2622-2631, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33179567

ABSTRACT

Influenza viruses have an error-prone polymerase complex that facilitates a mutagenic environment. Antigenic mutants swiftly arise from this environment with the capacity to persist in both humans and economically important livestock even in the face of vaccination. Furthermore, influenza viruses can adjust the antigenicity of the haemagglutinin (HA) protein, the primary influenza immunogen, using one of four molecular mechanisms. Two prominent mechanisms are: (1) enhancing binding avidity of HA toward cellular receptors to outcompete antibody binding and (2) amino acid substitutions that introduce an N-linked glycan on HA that sterically block antibody binding. In this study we investigate the impact that adsorptive mutation and N-linked glycosylation have on receptor-binding, viral fitness, and antigenicity. We utilize the H9N2 A/chicken/Pakistan/SKP-827/16 virus which naturally contains HA residue T180 that we have previously shown to be an adsorptive mutant relative to virus with T180A. We find that the addition of N-linked glycans can be beneficial or deleterious to virus replication depending on the background receptor binding avidity. We also find that in some cases, an N-linked glycan can trump the effect of an avidity enhancing substitution with respect to antigenicity. Taken together these data shed light on a potential route to the generation of a virus which is "fit" and able to overcome vaccine pressure.


Subject(s)
Amino Acid Substitution , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A Virus, H9N2 Subtype/physiology , Adsorption , Animals , Cells, Cultured , Chickens , Dogs , Genetic Fitness , Glycosylation , HEK293 Cells , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Influenza A Virus, H9N2 Subtype/immunology , Madin Darby Canine Kidney Cells , Mutagenesis, Site-Directed , Virus Replication
20.
J Virol ; 94(19)2020 09 15.
Article in English | MEDLINE | ID: mdl-32699084

ABSTRACT

H7N9 avian influenza viruses (AIVs) continue to evolve and remain a huge threat to human health and the poultry industry. Previously, serially passaging the H7N9 A/Anhui/1/2013 virus in the presence of homologous ferret antiserum resulted in immune escape viruses containing amino acid substitutions alanine to threonine at residues 125 (A125T) and 151 (A151T) and leucine to glutamine at residue 217 (L217Q) in the hemagglutinin (HA) protein. These HA mutations have also been found in field isolates in 2019. To investigate the potential threat of serum escape mutant viruses to humans and poultry, the impact of these HA substitutions, either individually or in combination, on receptor binding, pH of fusion, thermal stability, and virus replication were investigated. Our results showed the serum escape mutant formed large plaques in Madin-Darby canine kidney (MDCK) cells and grew robustly in vitro and in ovo They had a lower pH of fusion and increased thermal stability. Of note, the serum escape mutant completely lost the ability to bind to human-like receptor analogues. Further analysis revealed that N-linked glycosylation, as a result of A125T or A151T substitutions in HA, resulted in reduced receptor-binding avidity toward both human and avian-like receptor analogues, and the A125T+A151T mutations completely abolished human-like receptor binding. The L217Q mutation enhanced the H7N9 acid and thermal stability while the A151T mutation dramatically decreased H7N9 HA thermal stability. To conclude, H7N9 AIVs that contain A125T+A151T+L217Q mutations in the HA protein may pose a reduced pandemic risk but remain a heightened threat for poultry.IMPORTANCE Avian influenza H7N9 viruses have been causing disease outbreaks in poultry and humans. We previously determined that propagation of H7N9 virus in virus-specific antiserum gives rise to mutant viruses carrying mutations A125T+A151T+L217Q in their hemagglutinin protein, enabling the virus to overcome vaccine-induced immunity. As predicted, these immune escape mutations were also observed in the field viruses that likely emerged in the immunized or naturally exposed birds. This study demonstrates that the immune escape mutants also (i) gained greater replication ability in cultured cells and in chicken embryos as well as (ii) increased acid and thermal stability but (iii) lost preferences for binding to human-type receptor while maintaining binding for the avian-like receptor. Therefore, they potentially pose reduced pandemic risk. However, the emergent virus variants containing the indicated mutations remain a significant risk to poultry due to antigenic drift and improved fitness for poultry.


Subject(s)
Hemagglutinins, Viral/genetics , Hemagglutinins, Viral/immunology , Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H7N9 Subtype/immunology , Mutation , Pandemics , Virus Replication/physiology , Amino Acid Substitution , Animals , Dogs , Hemagglutinins, Viral/chemistry , Hydrogen-Ion Concentration , Influenza in Birds/virology , Madin Darby Canine Kidney Cells , Models, Molecular , Poultry , Protein Binding , Protein Conformation , Protein Stability
SELECTION OF CITATIONS
SEARCH DETAIL
...