Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(16): 18570-18577, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35414171

ABSTRACT

Supercapacitors are considered potential energy storage devices and have drawn significant attention due to their superior intrinsic advantages. Herein, we report the synthesis of ReS2 embedded in MoS2 nanosheets (RMS-31) by a hydrothermal technique. The prepared RMS-31 electrode material demonstrated superior pseudocapacitive behavior in 1 M KOH electrolyte solution, which is confirmed by the heterostructure of RMS-31 nanosheet architectures. RMS-31 has a specific capacitance of 244 F g-1 at a current density of 1 A g-1 and a greater areal capacitance of 540 mF cm-2 at a current density of 5 mA cm-2. The symmetric supercapacitor device with the RMS-31 electrode delivers an energy density of 28 W h cm-2 with a power density of 1 W cm-2 and reveals long-term stability at a constant current density of 5 mA cm-2 for 10,000 cycles while accomplishing a retention of 66.5%. The high performance of this symmetric device is attributed to the synergistic effect of ReS2 and MoS2 and the presence of the metallic 1T-MoS2 phase in the RMS-31 electrode. To the best of our knowledge, this is the first report of increasing the interlayer spacing of 2H-MoS2 by incorporating ReS2 for symmetric supercapacitor applications.

2.
Langmuir ; 2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34351165

ABSTRACT

This work investigates, for the first time, the application of sonochemically prepared bovine serum albumin (BSA) microspheres (BSAMS) as adsorbents of industrial organic pollutant dyes, such as rhodamine B (RhB), rhodamine 6G (Rh6G), and methylene blue (MB). These dyes also serve as model compounds for other organic pollutants such as bisphenol A and 2-nitrophenol. Adsorption kinetics of the dyes by the BSAMS was studied using pseudo-first-order (PFO) and pseudo-second-order (PSO) kinetic models. It was found that RhB follows PFO, with an adsorption capacity, qe,cal, of 7.9 mg/g, which was closer to the experimental adsorption capacity of qe,exp. of 7.6 mg/g. However, MB and Rh6G were controlled by PSO kinetics, with a qe,cal of 5.6 mg/g for MB and 6.6 mg/g for Rh6G, closer to the experimental adsorption capacity of 5.7 and 6.4 mg/g, respectively. The intraparticle diffusion (ID) model applied to the three dyes indicated multi-linearity with ID as the rate-limiting step in the adsorption process. Furthermore, the adsorption equilibria for each of the organic pollutants were studied through various isotherm models such as Langmuir, Freundlich, Temkin, and Halsey, which indicated physical interaction between the BSAMS and the dye pollutants, thus suggesting the applicability of the BSAMS as pollutant adsorbent materials. It was found that the BSAMS can effectively remove RhB, MB, and Rh6G from wastewater with efficiencies of 95.5, 83.3, and 97.9%, respectively.

3.
Ultrason Sonochem ; 60: 104804, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31563795

ABSTRACT

In this article, we report a facile approach for the synthesis of an inexpensive catalyst of bimetallic Hg/Pd alloys comprising nanoparticles with various structures using a unique ultrasonic reaction that is conducted without the use of any reducing agent. The nanoparticles of Hg/Pd alloys (HgPd and Hg2Pd5) were achieved for the first time by sonicating an aqueous solution of Palladium (II) nitrate with metallic liquid mercury, as evidenced by XRD. EDS further confirmed the presence of Pd and Hg elements in the alloy. The surface morphology and structure of the nanoparticles have been systematically investigated by HRSEM, HRTEM and SAED pattern. In order to explore the catalytic activity of the as-synthesized nanoalloys, the catalytic reduction of 4-nitrophenol and a few other nitrophenol derivatives were investigated. Excellent catalytic activity was obtained for Hg/Pd (1:1) alloy, and the rate constant for the reduction of 4-NP with Hg/Pd at room temperature was found to be 58.4 × 10-3 s-1, which is possibly the highest ever reported. The catalyst exhibited superior stability and reusability when compared with those reported in the literature for other catalysts based on noble metals.

SELECTION OF CITATIONS
SEARCH DETAIL
...