Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(12): e0295540, 2023.
Article in English | MEDLINE | ID: mdl-38100425

ABSTRACT

OBJECTIVES: Chronic immune activation and severe inflammatory states are positively associated with resting metabolic rate (RMR; kcal/day), but the impacts of mild immune stimuli on metabolism are poorly understood. This study investigates the within-individual association between the inflammatory response to influenza vaccination and RMR in young adults. METHODS: We evaluated RMRs through indirect calorimetry and circulating c-reactive protein (CRP) concentrations (mg/L)-a direct measure of inflammation-via high-sensitivity immunoassays of dried blood spots (n = 17) at baseline and two- and seven-days post-vaccine. Wilcoxon matched-pairs signed-rank tests were used to evaluate the magnitude of the CRP and RMR responses. Type II Wald chi-square tests of linear mixed-effect models assessed whether those responses were correlated. RESULTS: Baseline CRP was 1.39 ± 1.26 mg/L. On day two post-vaccine, CRP increased by 1.47 ± 1.37 mg/L (p < 0.0001), representing a 106% increase above baseline values. CRP remained higher on day seven post-vaccine, 1.32 ± 2.47 mg/L (p = 0.05) above baseline values. There were no statistically significant changes in RMR from baseline to day two (p = 0.98) or day seven (p = 0.21). Change in CRP from baseline did not predict RMR variation across days (p = 0.46). CONCLUSIONS: We find no evidence that adult influenza vaccination results in a corresponding increase in RMR. These results suggest that the energetic cost of an influenza vaccine's mild inflammatory stimulus is either too small to detect or is largely compensated by a temporary downregulation of energy allocated to other metabolic tasks.


Subject(s)
Influenza Vaccines , Influenza, Human , Humans , Young Adult , Basal Metabolism/physiology , C-Reactive Protein , Influenza, Human/prevention & control , Calorimetry, Indirect/methods , Vaccination
2.
J Physiol Anthropol ; 42(1): 1, 2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36829218

ABSTRACT

Human reproduction is energetically costly, even more so than other primates. In this review, we consider how the energy cost of physical activity impacts reproductive tasks. Daily energy expenditure appears to be constrained, leading to trade-offs between activity and reproduction expenditures in physically active populations. High workloads can lead to suppression of basal metabolic rate and low gestational weight gain during pregnancy and longer interbirth intervals. These responses lead to variation in fertility, including age at first reproduction and interbirth interval. The influence of energetics is evident even in industrialized populations, where cultural and economic factors predominate. With the decoupling of skills acquisition from food procurement, extrasomatic resources and investment in individual offspring becomes very costly. The result is greater investment in fewer offspring. We present a summary of age at first reproduction and interbirth interval trends across a diverse, global sample representing 44 countries and two natural fertility populations. While economic factors impact fertility, women in energy-rich, industrialized populations are capable of greater reproductive output than women in energy-stressed populations. Thus, energetic factors can be disentangled from cultural and economic impacts on fertility. Future research should focus on objective measurements of energy intake, energy expenditure, and physical activity in a broader sample of populations to elucidate the role of energetics in shaping reproductive outcomes and health.


Subject(s)
Fertility , Reproduction , Pregnancy , Animals , Humans , Female , Reproduction/physiology , Exercise
3.
PLoS One ; 17(7): e0270221, 2022.
Article in English | MEDLINE | ID: mdl-35793317

ABSTRACT

The acute effects of exercise on metabolic energy expenditure and inflammation are well studied, but the long-term effects of regular daily physical activity on metabolic and endocrine effects are less clear. Further, prior studies investigating the impact of daily physical activity in large cohorts have generally relied on self-reported activity. Here, we used the U.S. National Health and Nutrition Examination Survey (NHANES) to investigate the relationship between daily physical activity and both thyroid and immune activity. Daily physical activity was assessed through accelerometry or accelerometry-validated survey responses. Thyroid activity was assessed from circulating levels of thyroid stimulating hormone (TSH) and thyroxine (T4). Immune function was assessed from circulating cytokines (C-reactive protein [CRP], immunoglobulin E [IgE], fibrinogen) and blood cell counts. In general linear models including body mass index, age, gender, activity and TSH as factors, active adults had a lower levels of T4 and reduced slope of the TSH:T4 relationship. Similarly, greater physical activity was associated with lower CRP and fibrinogen levels (but not IgE) and lower white blood cell, basophil, monocyte, neutrophil, and eosinophil (but not lymphocyte) counts. Daily physical activity was also associated with lower prevalence of clinically elevated CRP, WBC, and lymphocytes in a dose-response manner. These results underscore the long-term impact of daily physical activity on both systemic metabolic activity (thyroid) and on specific physiological tasks (immune). The regulatory effects of physical activity on other bodily systems are clinically relevant and should be incorporated into public health strategies promoting exercise.


Subject(s)
Thyroid Gland , Thyroid Hormones , Adult , Biomarkers , C-Reactive Protein , Exercise , Female , Fibrinogen , Humans , Inflammation , Leukocytes , Male , Nutrition Surveys , Thyrotropin
4.
Am J Biol Anthropol ; 177(3): 489-500, 2022 03.
Article in English | MEDLINE | ID: mdl-36787760

ABSTRACT

OBJECTIVES: To assess manifestations of metabolic bone disease (MBD) and their potential environmental and phenotypic factors in captive and non-captive baboon (Papio spp.) specimens. MATERIALS AND METHODS: Our sample consisted of 160 baboon specimens at the Smithsonian's National Museum of Natural History accessioned from 1890 to 1971. Combining cranial indicators of MBD and the museum's historical data, we examined factors contributing to likely instances of MBD. We used binomial-family generalized linear models to assess differences in MBD frequency by environment (captive, non-captive), specimen accession year, and skin color (light, medium, dark). RESULTS: Indicators of MBD were most frequently observed in captive baboons, with a decrease in MBD frequency over time. Fifteen non-captive individuals showed indicators of MBD, which are the first published cases of MBD in non-captive nonhuman primates (NHPs) to our knowledge. The most common MBD indicators were bone porosity (n = 35) and bone thickening/enlargement (n = 35). Fibrous osteodystrophy was observed frequently in our sample, likely relating to nutritional deficiencies. We found no association between exposed facial skin color variation and MBD. CONCLUSIONS: Our findings are consistent with historical accounts of MBD prevalence in captive facilities, especially earlier in the 20th century. A decrease in MBD prevalence later in the 20th century likely reflects improvements in housing, diet, and veterinary care in captive settings. Causes of MBD development in non-captive baboons should be further explored, as understanding the potential health impacts that anthropogenic environments impose on NHPs is imperative as humans increasingly alter the natural world in the 21st century.


Subject(s)
Bone Diseases, Metabolic , Museums , Animals , Humans , Papio
SELECTION OF CITATIONS
SEARCH DETAIL
...