Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 124(4): 046803, 2020 Jan 31.
Article in English | MEDLINE | ID: mdl-32058735

ABSTRACT

We predict the existence of a novel long-lived gapless plasmon mode in a type-II Dirac semimetal (DSM). This gapless mode arises from the out-of-phase oscillations of the density fluctuations in the electron and the hole pockets of a type-II DSM. It originates beyond a critical wave vector along the direction of the tilt axis, owing to the momentum separation of the electron and hole pockets. A similar out-of-phase plasmon mode arises in other multicomponent charged fluids as well, but generally, it is Landau damped and lies within the particle-hole continuum. In the case of a type-II DSM, the open Fermi surface prohibits low-energy finite momentum single-particle excitations, creating a "gap" in the particle-hole continuum. The gapless plasmon mode lies within this particle-hole continuum gap and, thus, it is protected from Landau damping.

2.
Phys Rev Lett ; 121(8): 086804, 2018 Aug 24.
Article in English | MEDLINE | ID: mdl-30192568

ABSTRACT

Transition-metal dichalcogenides showing type-II Dirac fermions are emerging as innovative materials for nanoelectronics. However, their excitation spectrum is mostly unexplored yet. By means of high-resolution electron energy loss spectroscopy and density functional theory, here, we identify the collective excitations of type-II Dirac fermions (3D Dirac plasmons) in PtTe_{2} single crystals. The observed plasmon energy in the long-wavelength limit is ∼0.5 eV, which makes PtTe_{2} suitable for near-infrared optoelectronic applications. We also demonstrate that interband transitions between the two Dirac bands in PtTe_{2} give rise to additional excitations at ∼1 and ∼1.4 eV. Our results are crucial to bringing to fruition type-II Dirac semimetals in optoelectronics.

SELECTION OF CITATIONS
SEARCH DETAIL
...