Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Microbiol ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839984

ABSTRACT

Dengue is a major global health threat, and there are no approved antiviral agents. Prior research using Cas13 only demonstrated dengue mitigation in vitro. Here we demonstrate that systemic delivery of mRNA-encoded Cas13a and guide RNAs formulated in lipid nanoparticles can be used to treat dengue virus (DENV) 2 and 3 in mice. First, we identified guides against DENV 2 and 3 that demonstrated in vitro efficacy. Next, we confirmed that Cas13 enzymatic activity is necessary for DENV 2 or DENV 3 mitigation in vitro. Last, we show that a single dose of lipid-nanoparticle-formulated mRNA-encoded Cas13a and guide RNA, administered 1 day post-infection, promotes survival of all infected animals and serum viral titre decreases on days 2 and 3 post-infection after lethal challenge in mice. Off-target analysis in mice using RNA sequencing showed no collateral cleavage. Overall, these data demonstrate the potential of mRNA-encoded Cas13 as a pan-DENV drug.

2.
Nat Biotechnol ; 39(6): 717-726, 2021 06.
Article in English | MEDLINE | ID: mdl-33536629

ABSTRACT

Cas13a has been used to target RNA viruses in cell culture, but efficacy has not been demonstrated in animal models. In this study, we used messenger RNA (mRNA)-encoded Cas13a for mitigating influenza virus A and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in mice and hamsters, respectively. We designed CRISPR RNAs (crRNAs) specific for PB1 and highly conserved regions of PB2 of influenza virus, and against the replicase and nucleocapsid genes of SARS-CoV-2, and selected the crRNAs that reduced viral RNA levels most efficiently in cell culture. We delivered polymer-formulated Cas13a mRNA and the validated guides to the respiratory tract using a nebulizer. In mice, Cas13a degraded influenza RNA in lung tissue efficiently when delivered after infection, whereas in hamsters, Cas13a delivery reduced SARS-CoV-2 replication and reduced symptoms. Our findings suggest that Cas13a-mediated targeting of pathogenic viruses can mitigate respiratory infections.


Subject(s)
COVID-19/therapy , Influenza, Human/therapy , RNA, Messenger/pharmacology , SARS-CoV-2/genetics , Animals , COVID-19/genetics , COVID-19/virology , CRISPR-Cas Systems/genetics , Cricetinae , Disease Models, Animal , Humans , Influenza, Human/genetics , Influenza, Human/virology , Mice , Orthomyxoviridae/drug effects , Orthomyxoviridae/genetics , Orthomyxoviridae/pathogenicity , RNA, Messenger/genetics , RNA, Viral/genetics , Respiratory System/drug effects , Respiratory System/metabolism , SARS-CoV-2/pathogenicity
3.
Virology ; 525: 150-160, 2018 12.
Article in English | MEDLINE | ID: mdl-30286427

ABSTRACT

Recombinant SHFV infectious cDNA clones expressing a foreign gene from an additional sg mRNA were constructed. Two 3' genomic region sites, between ORF4' and ORF2b and between ORF4 and ORF5, were utilized for insertion of the myxoma M013 gene with a C-terminal V5 tag followed by one of the three inserted transcription regulatory sequences (TRS), TRS2', TRS4' or TRS7. M013 insertion at the ORF4'/ORF2b site but not the ORF4/ORF5 site generated progeny virus but only the recombinant virus with an inserted TRS2' retained the entire M013 gene through passage four. Insertion of an auto-fluorescent protein gene, iLOV, with an inserted TRS2' at the ORF4'/ORF2b site, generated viable progeny virus. iLOV expression was maintained through passage eight. Although regulation of SHFV subgenomic RNA synthesis is complex, the ORF4'/ORF2b site, which is located between the two sets of minor structural proteins, is able to tolerate foreign gene insertion.


Subject(s)
Arterivirus/genetics , Gene Expression Regulation, Viral/physiology , Regulatory Sequences, Ribonucleic Acid/genetics , Base Sequence , RNA, Messenger , RNA, Viral/genetics , Reassortant Viruses , Viral Proteins/genetics , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...