Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroscience ; 151(4): 1173-83, 2008 Feb 19.
Article in English | MEDLINE | ID: mdl-18207332

ABSTRACT

The beneficial effects of exercise on learning and memory are well documented but the effects of prenatal exposure to maternal exercise on offspring are not clear yet. Using a two-trial-per-day Morris water maze for five consecutive days, succeeded by a probe trial 2 days later we showed that maternal voluntary exercise (wheel running) by pregnant rats increased the acquisition phase of the pups' learning. Maternal forced swimming by pregnant rats increased both acquisition and retention phases of the pups' learning. Also we found that the rat pups whose mother was submitted to forced-swimming during pregnancy had significantly higher brain, liver, heart and kidney weights compared with their sedentary counterparts. On the other hand we estimated the cell number of different regions of the hippocampus in the rat pups. We found that both exercise models during pregnancy increased the cell number in cornus ammonis subregion 1 (CA1) and dentate gyrus of the hippocampus in rat pups. To determine the role that noradrenergic and serotonergic neurotransmission and N-methyl-D-aspartate (NMDA) receptors hold in mediation of the maternal exercise in offspring, we used N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4), p-chloroamphetamine (PCA) and MK-801 to eliminate or block the above systems, respectively. Blocking the NMDA receptors, significantly abolished learning and memory in rat pups from all three experimental groups. Elimination of noradrenergic or serotonergic input did not significantly attenuate the learning and memory in rat pups whose mothers were sedentary, while it significantly reversed the positive effects of maternal exercise during pregnancy on rat pups' learning and memory. The presented results suggest that noradrenergic and serotonergic systems in offspring brain seem to have a crucial specific role in mediating the effects of maternal physical activity during pregnancy on rat pups' cognitive function in both models of voluntary and forced exercise.


Subject(s)
Maternal Behavior/physiology , Memory/physiology , Norepinephrine/metabolism , Physical Conditioning, Animal/physiology , Serotonin/metabolism , Space Perception/physiology , Analysis of Variance , Animals , Animals, Newborn , Behavior, Animal , Benzylamines/toxicity , Corticosterone/blood , Female , Male , Maze Learning/drug effects , Memory/drug effects , Pregnancy , Rats , Rats, Wistar , Reaction Time/physiology , Space Perception/drug effects , Swimming , p-Chloroamphetamine/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...