Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 47(16): 5843-5849, 2018 Apr 24.
Article in English | MEDLINE | ID: mdl-29648562

ABSTRACT

Nickel closo-dodecaborate NiB12H12 was prepared by mechanosynthesis (ball milling) of mixtures of Na2B12H12 + NiCl2 followed by hydration and drying under dynamic vacuum. The crystal structures of hydrated and anhydrous closo-dodecaborates were characterized by temperature dependent synchrotron radiation X-ray powder diffraction, ab initio calculations, thermal analysis and infrared spectroscopy. Three different water containing complexes were found: a homoleptic octahedral complex in Ni(H2O)6B12H12 crystallizing in two different deformation variants of a complex centred closo-dodecaborate cube, and a heteroleptic octahedral complex in Ni(H2O)4B12H12 containing four water molecules and two hydrogens and centring also a deformed closo-dodecaborate cube. Anhydrous nickel closo-dodecaborate was obtained by drying the hydrated sample under dynamic vacuum. It crystallizes with bcc packing of B12H122- anions and Ni2+ is disordered close to the triangular face of the tetrahedral interstice coordinated by a H5 square pyramid.

2.
Anal Chem ; 89(24): 13176-13181, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29131937

ABSTRACT

The renewed interest of mechanochemistry as an ecofriendly synthetic route has inspired original methodologies to probe reactions, with the aim to rationalize unknown mechanisms. Recently, Friscic et al. ( Nat. Chem. 2013 , 5 , 66 - 73 , DOI: 10.1038/nchem.1505 ) monitored the progress of milling reactions by synchrotron X-ray powder diffraction (XRPD). For the first time, it was possible to acquire directly information during a mechanochemical process. This new methodology is still in its early stages, and its development will definitively transform the fundamental understanding of mechanochemistry. A new type of in situ ball mill setup has been developed at the Materials Science beamline (Swiss Light Source, Paul Scherrer Institute, Switzerland). Its particular geometry, described here in detail, results in XRPD data displaying significantly lower background and much sharper Bragg peaks, which in turn allow more sophisticated analysis of mechanochemical processes, extending the limits of the technique.

3.
Inorg Chem ; 56(9): 5006-5016, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28398061

ABSTRACT

Three different types of anion packing, i.e., hexagonal close packed (hcp), cubic close packed (ccp), and body centered cubic (bcc), are investigated experimentally and with ab initio calculations in the model system Na2B12H12. Solvent free and water assisted mechanical grinding provide polycrystalline samples for temperature-dependent synchrotron radiation X-ray powder diffraction and electrochemical impedance spectroscopy. It is shown that among the common close packed lattices, the hcp anionic backbone creates very favorable conditions for three-dimensional ionic conduction pathways, comprised of O-O, T-T, and T-O-T (O for octahedral, T for tetrahedral) cation hops. The hcp lattice is stable with respect to ccp and bcc lattices only at higher volumes per formula unit, which is achieved either by cationic substitution with larger cations or partial substitution of hydrogen by iodine on the closo-anion. It is found that the partial cationic substitution of sodium with lithium, potassium, or cesium does not lead to enhanced conductivity due to the obstruction of the conduction pathway by the larger cation located on the octahedral site. Substitution on the closo-anion itself shows remarkable positive effects, the ionic conductivity of Na2B12H12-xIx reaching values of close to 10-1 S cm-1 at a rather low temperature of 360 K. While the absolute value of σ is comparable to that of NaCB11H12, the temperature at which it is attained is approximately 20 K lower. The activation energy of 140 meV is determined from the Arrhenius relation and among the lowest ever reported for a Na-conducting solid.

4.
Inorg Chem ; 52(17): 9941-7, 2013 Sep 03.
Article in English | MEDLINE | ID: mdl-23968549

ABSTRACT

The compounds, Li3MZn5(BH4)15, M = Mg and Mn, represent the first trimetallic borohydrides and are also new cationic solid solutions. These materials were prepared by mechanochemical synthesis from LiBH4, MCl2 or M(BH4)2, and ZnCl2. The compounds are isostructural, and their crystal structure was characterized by in situ synchrotron radiation powder X-ray and neutron diffraction and DFT calculations. While diffraction provides an average view of the structure as hexagonal (a = 15.371(3), c = 8.586(2) Å, space group P63/mcm for Mg-compound at room temperature), the DFT optimization of locally ordered models suggests a related ortho-hexagonal cell. Ordered models that maximize Mg-Mg separation have the lowest DFT energy, suggesting that the hexagonal structure seen by diffraction is a superposition of three such orthorhombic structures in three orientations along the hexagonal c-axis. No conclusion about the coherent length of the orthorhombic structure can be however done. The framework in Li3MZn5(BH4)15 is of a new type. It contains channels built from face-sharing (BH4)6 octahedra. While X-ray and neutron powder diffraction preferentially localize lithium in the center of the octahedra, thus resulting in two weakly interconnected frameworks of a new type, the DFT calculations clearly favor lithium inside the shared triangular faces, leading to two interpenetrated mco-nets (mco-c type) with the basic tile being built from three tfa tiles, which is the framework type of the related bimetallic LiZn2(BH4)5. The new borohydrides Li3MZn5(BH4)15 are potentially interesting as solid-state electrolytes, if the lithium mobility within the octahedral channels is improved by disordering the site via heterovalent substitution. From a hydrogen storage point of view, their application seems to be limited as the compounds decompose to three known metal borohydrides.

SELECTION OF CITATIONS
SEARCH DETAIL
...