Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 242(Pt 2): 124861, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37192712

ABSTRACT

The aim of this research work is to improve the mechanical and water-resistance properties of soy protein isolate (SPI) biofilm. In this work, 3-aminopropyltriethoxysilane (APTES) coupling-agent modified nanocellulose was introduced into the SPI matrix in the presence of citric acid cross-linker. The presence of amino groups in APTES facilitated the formation of - cross-linked structures with soy protein. The incorporation of a citric acid cross-linker made the cross-linking process more productive, and the surface smoothness of the film was confirmed by a Scanning Electron Microscope (FE-SEM). From the study of the mechanical and thermal properties and water resistance of the film, it was confirmed that the results were highly satisfactory for the modified nanocellulose-incorporated film compared to the non-modified one. Additionally, coating of citral essential oil onto SPI nanocomposite film displayed antimicrobial properties due to the presence of various phenolic groups in the citral oil. The Tensile Strength and Young's Modulus of silane-modified nanocellulose containing film were enhanced by ∼119 % and âˆ¼ 112 %, respectively on incorporation of 1 % APTES-modified nanocellulose. Consequently, this work is expected to offer an effective way for silylated nano-cellulose reinforcing soy protein isolate (SPI)-based bio nanocomposite films for packaging applications. As an example, we have demonstrated one of the applications as wrapping films for packing black grapes.


Subject(s)
Soybean Proteins , Water , Permeability , Cellulose , Tensile Strength , Anti-Bacterial Agents/pharmacology
2.
Heliyon ; 6(6): e04008, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32548316

ABSTRACT

In this research, developed finite element codes were used to study the effective elastic modulus and stress-strain distribution profiles of epoxy resin filled with 6 wt. % microparticles of kaolinite. The random distribution of the particles was microstructurally regenerated with Digimat MSC software and random sequential algorithm codes in epoxy matrix. Stochastic representative volume element models of the composites were developed and analyzed under periodic boundary conditions. For validation, the predicted result by finite element analysis was compared with that of Mori-Tanaka's mean field homogenization scheme, selected micromechanical models and experiment. All the results indicated that 6 wt. % of kaolinite microparticles can improve the elastic modulus and load-bearing capacity of epoxy resin with <5 % error between predicted and actual results. The microstructure, phase identification and chemical characterization of the composite were also studied with scanning electron microscopy, x-ray diffraction spectroscopy and energy-dispersive x-ray spectroscopy, respectively. In addition, the particle size and distribution of the kaolinite in the epoxy matrix were experimentally investigated.

3.
Polymers (Basel) ; 12(3)2020 Mar 05.
Article in English | MEDLINE | ID: mdl-32151004

ABSTRACT

The current research trend for excellent miscibility in polymer mixing is the use of plasticizers. The use of most plasticizers usually has some negative effects on the mechanical properties of the resulting composite and can sometimes make it toxic, which makes such polymers unsuitable for biomedical applications. This research focuses on the improvement of the miscibility of polymer composites using two-step mixing with a rheomixer and a mix extruder. Polylactic acid (PLA), chitin, and starch were produced after two-step mixing, using a compression molding method with decreasing composition variation (between 8% to 2%) of chitin and increasing starch content. A dynamic mechanical analysis (DMA) was used to study the mechanical behavior of the composite at various temperatures. The tensile strength, yield, elastic modulus, impact, morphology, and compatibility properties were also studied. The DMA results showed a glass transition temperature range of 50 °C to 100 °C for all samples, with a distinct peak value for the loss modulus and factor. The single distinct peak value meant the polymer blend was compatible. The storage and loss modulus increased with an increase in blending, while the loss factor decreased, indicating excellent compatibility and miscibility of the composite components. The mechanical properties of the samples improved compared to neat PLA. Small voids and immiscibility were noticed in the scanning electron microscopy images, and this was corroborated by X-ray diffraction graphs that showed an improvement in the crystalline nature of PLA with starch. Bioabsorption and toxicity tests showed compatibility with the rat system, which is similar to the human system.

4.
Polymers (Basel) ; 11(10)2019 Oct 11.
Article in English | MEDLINE | ID: mdl-31614623

ABSTRACT

This paper presents a comparison on the effects of blending chitin and/or starch with poly(lactic acid) (PLA). Three sets of composites (PLA-chitin, PLA-starch and PLA-chitin-starch) with 92%, 94%, 96% and 98% PLA by weight were prepared. The percentage weight (wt.%) amount of the chitin and starch incorporated ranges from 2% to 8%. The mechanical, dynamic mechanical, thermal and microstructural properties were analyzed. The results from the tensile strength, yield strength, Young's modulus, and impact showed that the PLA-chitin-starch blend has the best mechanical properties compared to PLA-chitin and PLA-starch blends. The dynamic mechanical analysis result shows a better damping property for PLA-chitin than PLA-chitin-starch and PLA-starch. On the other hand, the thermal property analysis from thermogravimetry analysis (TGA) shows no significant improvement in a specific order, but the glass transition temperature of the composite increased compared to that of neat PLA. However, the degradation process was found to start with PLA-chitin for all composites, which suggests an improvement in PLA degradation. Significantly, the morphological analysis revealed a uniform mix with an obvious blend network in the three composites. Interestingly, the network was more significant in the PLA-chitin-starch blend, which may be responsible for its significantly enhanced mechanical properties compared with PLA-chitin and PLA-starch samples.

5.
Heliyon ; 5(7): e02028, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31317082

ABSTRACT

High density polyethylene (HDPE) composites reinforced with short bamboo fibre (BF) were fabricated by compression moulding technique. BF were extracted from bamboo culm and treated with 0.5 M NaOH. The composites were developed by melt-compounding various weight fractions (2, 4, 6, 8 and 10 wt.%) of the treated BF with HDPE with the aid of single screw laboratory extruder at a temperature of 180-220 °C. The extrudates were thereafter moulded into various test specimens with the aid of carver laboratory press at a temperature of 230 °C and applied pressure of 0.2 kPa for 10 min. Effect of the treated BF on the mechanical properties and water uptake behaviour of the composites were studied. The results revealed that there was enhancement in the mechanical properties from 2 - 4 wt.% of BF while the water absorption rate increased with increase in the fibre weight fraction. The morphology of the composites showed that there was a homogenous dispersion of BF at lower weight fraction, although fibre agglomeration was noticed at higher weight fraction. The results of this study revealed that treated bamboo fibres are suitable for reinforcing HDPE.

6.
Polymers (Basel) ; 10(12)2018 Dec 09.
Article in English | MEDLINE | ID: mdl-30961288

ABSTRACT

Over the past decades, research has escalated on the use of polylactic acid (PLA) as a replacement for petroleum-based polymers. This is due to its valuable properties, such as renewability, biodegradability, biocompatibility and good thermomechanical properties. Despite possessing good mechanical properties comparable to conventional petroleum-based polymers, PLA suffers from some shortcomings such as low thermal resistance, heat distortion temperature and rate of crystallization, thus different fillers have been used to overcome these limitations. In the framework of environmentally friendly processes and products, there has been growing interest on the use of cellulose nanomaterials viz. cellulose nanocrystals (CNC) and nanofibers (CNF) as natural fillers for PLA towards advanced applications other than short-term packaging and biomedical. Cellulosic nanomaterials are renewable in nature, biodegradable, eco-friendly and they possess high strength and stiffness. In the case of eco-friendly processes, various conventional processing techniques, such as melt extrusion, melt-spinning, and compression molding, have been used to produce PLA composites. This review addresses the critical factors in the manufacturing of PLA-cellulosic nanomaterials by using conventional techniques and recent advances needed to promote and improve the dispersion of the cellulosic nanomaterials. Different aspects, including morphology, mechanical behavior and thermal properties, as well as comparisons of CNC- and CNF-reinforced PLA, are also discussed.

7.
J Biomater Sci Polym Ed ; 28(14): 1588-1602, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28589745

ABSTRACT

In this report, we investigated the swelling behavior and antibacterial property of nanosilver composite hydrogels made from tea with polyacrylamide via a free-radical polymerization and green process technique. This is probably for the first time; tea-based nano silver composite hydrogels were developed. The composite hydrogels comprise embedded nano silver particles in the tea hydrogel matrix via a green process with mint leaf extract. The size of the nano silver particles in the hydrogel matrix was found to be < 10 nm. The nano silver composite hydrogels formed and their blank hydrogels from the mint leaf were characterized by using ultraviolet-visible spectroscopy, scanning electron microscopy with energy dispersive spectroscopy, transmission electron microscopy, thermogravimetric analysis and X-ray diffraction studies. The nano silver composite hydrogels developed exhibit eminent antibacterial activity against Escherichia coli and Staphylococcus aureus. This clearly indicates that the nano silver composite hydrogels are potential candidates for antimicrobial applications.


Subject(s)
Hydrogels/chemistry , Hydrogels/pharmacology , Mentha/chemistry , Nanocomposites/chemistry , Plant Leaves/chemistry , Silver/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Chemistry Techniques, Synthetic , Escherichia coli/drug effects , Green Chemistry Technology , Hydrogels/chemical synthesis , Metal Nanoparticles/chemistry , Polymerization , Staphylococcus aureus/drug effects
8.
Nanomicro Lett ; 8(3): 260-269, 2016.
Article in English | MEDLINE | ID: mdl-30460286

ABSTRACT

In the present study, chitosan and polyvinyl alcohol (PVA) were blended with different concentrations of sodium montmorillonite (Na+MMT) clay solution by a solvent casting method. X-ray diffraction and transition electron microscope results show that the film properties are related to the co-existence of Na+MMT intercalation/exfoliation in the blend and the interaction between chitosan-PVA and Na+MMT. 5-Fluorouracil (5-FU) was loaded with chitosan-PVA/Na+MMT nanocomposite films for in vitro drug delivery study. The antimicrobial activity of the chitosan-PVA/Na+MMT films showed significant effect against Salmonella (Gram-negative) and Staphylococcus aureus (Gram-positive), whereas 5-FU encapsulated chitosan-PVA/Na+MMT bio-nanocomposite films did not show any inhibition against bacteria. Our results indicate that combination of a flexible and soft polymeric material with high drug loading ability of a hard inorganic porous material can produce improved control over degradation and drug release. It will be an economically viable method for preparation of advanced drug delivery vehicles and biodegradable implants or scaffolds.

9.
J Microencapsul ; 32(5): 432-42, 2015.
Article in English | MEDLINE | ID: mdl-26268953

ABSTRACT

Polyamidoamine conjugates containing curcumin and bisphosphonate were synthesized via a one-pot aqueous phase Michael addition reaction. In the design of the conjugate, bisphosphonate formed an integral part of the polymer carrier backbone. Curcumin was incorporated onto the polyamidoamine backbone via piperazine linker. The conjugates were characterized by Fourier transform spectroscopy, energy-dispersive X-ray analysis, atomic force spectroscopy and nuclear magnetic resonance spectroscopy and it confirmed the successful incorporation of the antiproliferative agents onto the carriers. The weight percentage incorporation of bisphosphonate to the carriers was found to be between 2.56% and 3.34%. The in vitro release studies of curcumin from the polyamidoamine conjugate were performed in dialysis bag at selected pH values. The release of curcumin was significantly slower at pH 7.4 when compared to pH 5.8. The release profiles indicate that the conjugates are more stable at pH 7.4 and are potential sustained drug-delivery systems for combination therapy.


Subject(s)
Diphosphonates , Polyamines , Delayed-Action Preparations/chemical synthesis , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Diphosphonates/chemical synthesis , Diphosphonates/chemistry , Diphosphonates/pharmacokinetics , Hydrogen-Ion Concentration , Polyamines/chemical synthesis , Polyamines/chemistry , Polyamines/pharmacokinetics
10.
Carbohydr Polym ; 122: 230-6, 2015 May 20.
Article in English | MEDLINE | ID: mdl-25817663

ABSTRACT

The main theme of this work is to study the influence of ion-exchangeable alkali metal cations, such as: Li(+), Na(+), K(+), and Cs(+) on the thermal, mechanical and morphological properties. In this regard, a set of rectorite/chitosan (REC-CS) bio-nanocomposite films (BNCFs) was prepared by facile reaction of chitosan with ion-exchanged REC clay. The microstructure and morphology of BNCFs were investigated with XRD, TEM, SEM and AFM. Thermal and tensile properties of BNCFs were also investigated. As revealed from TEM and XRD results, the BNCFs featured a mixed morphology. Some intercalated clay sheets, together with nano-sized clay tactoids were obtained in LiREC/CS, NaREC/CS and KREC/CS of the BNCFs. From fractured surface study, via SEM, it was observed that the dispersion of chitosan polymer attaches to (and covers) the clay platelets. FTIR confirmed strong hydrogen bonds between clay and chitosan polymer. In addition, the thermal stabilities significantly varied when alkali metal cations varied from Li(+) to Cs(+). The BNCFs featured high tensile strengths (up to 84 MPa) and tensile moduli (up to 45 GPa). After evaluating these properties of BNCFs, we came to conclusion that these bio-nano composites can be used for packaging applications.


Subject(s)
Aluminum Silicates/chemistry , Cations/chemistry , Chitosan/chemistry , Metals, Alkali/chemistry , Minerals/chemistry , Polymers/chemistry , Clay , Hydrogen Bonding , Microscopy, Electron, Scanning , Nanocomposites/chemistry , Surface Properties , Tensile Strength
11.
Int J Biol Macromol ; 73: 115-23, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25445681

ABSTRACT

Natural polymer hydrogels are useful for controlling release of drugs. In this study, hydrogels containing gum acacia were synthesized by free-radical polymerization of acrylamide with gum acacia. The effect of gum acacia in the hydrogels on the release mechanism of nitrogen-containing bisphosphonate (BP) was studied at pH 1.2 and 7.4. The hydrogels exhibited high swelling ratios at pH 7.4 and low swelling ratios at pH 1.2. The release study was performed using UV-Visible spectroscopy via complex formation with Fe(III) ions. At pH 1.2, the release profile was found to be anomalous while at pH 7.4, the release kinetic of BP was a perfect zero-order release mechanism. The hydrogels were found to be pH-sensitive and the release profiles of the BP were found to be influenced by the degree of crosslinking of the hydrogel network with gum acacia. The preliminary results suggest that these hydrogels are promising devices for controlled delivery of bisphosphonate to the gastrointestinal region.


Subject(s)
Diphosphonates/chemistry , Gum Arabic/chemistry , Hydrogels/chemistry , Nitrogen/chemistry , Diphosphonates/administration & dosage , Drug Carriers/chemistry , Drug Delivery Systems , Drug Liberation , Kinetics , Molecular Structure , Polymers/chemistry , Spectrum Analysis
12.
J Biomed Mater Res A ; 102(6): 1941-9, 2014 Jun.
Article in English | MEDLINE | ID: mdl-23853120

ABSTRACT

In this research, aminoquinoline compounds were synthesized, characterized, and incorporated into water-soluble polymers to form conjugates. The conjugates were characterized by X-ray diffraction, thermal gravimetric analysis, scanning electron microscope, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy to confirm the successful incorporation of the aminoquinoline compound on to the polymer. The synthesized conjugates were screened for in vitro antiplasmodial activity in triplet test against chloroquine-sensitive strain of Plasmodium falciparum and chloroquine drug was used as a reference drug in all the experiments. A full dose-response was performed to determine the concentration inhibiting 50% of parasite growth (IC50 value). Polymeric conjugates containing 3-diethylamino-1-propylamine solubilizing units were found to be most active against the chloroquine-sensitive strain of P. falciparum.


Subject(s)
Aminoquinolines/chemistry , Aminoquinolines/pharmacology , Antimalarials/chemistry , Antimalarials/pharmacology , Plasmodium falciparum/drug effects , Humans , Malaria, Falciparum/drug therapy , Polymers/chemistry , Polymers/pharmacology , X-Ray Diffraction
13.
Carbohydr Polym ; 94(2): 822-8, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23544638

ABSTRACT

Uniaxial cellulose fabric Sterculia urens reinforced poly (lactic acid) (PLA) matrix biocomposites were prepared by a two-roll mill. In order to assess the suitability of Sterculia fabric as reinforcement for PLA matrix, the PLA/Sterculia fabric biocomposites were prepared. Tensile parameters, such as maximum stress, Young's modulus and elongation-at-break, were determined using the Universal Testing Machine. The effect of alkali treatment and silane-coupling agent on the tensile properties of PLA-based biocomposites was studied. The results of thermogravimetric analysis show that uniaxial treatment of the fabric can improve the degradation temperature of the biocomposites. Moreover, morphological studies by scanning electron microscopy confirmed that better adhesion between the uniaxial fabric and the matrix was achieved. It was established that standard PLA resins are suitable for the manufacture of S. urens uniaxial fabric reinforced biocomposites with excellent engineering properties, useful for food packaging.


Subject(s)
Biocompatible Materials/chemistry , Lactic Acid/chemistry , Polymers/chemistry , Sterculia/metabolism , Alkalies/chemistry , Elastic Modulus , Lactic Acid/metabolism , Microscopy, Electron, Scanning , Polyesters , Polymers/metabolism , Silanes/chemistry , Temperature , Tensile Strength
14.
Carbohydr Polym ; 93(2): 622-7, 2013 Apr 02.
Article in English | MEDLINE | ID: mdl-23499104

ABSTRACT

The development of commercially viable "green products", based on natural resources for the matrices and reinforcements, in a wide range of applications, is on the rise. The present paper focuses on Sterculia urens short fiber reinforced pure cellulose matrix composite films. The morphologies of the untreated and 5% NaOH (alkali) treated S. urens fibers were observed by SEM. The effect of 5% NaOH treated S. urens fiber (5, 10, 15 and 20% loading) on the mechanical properties and thermal stability of the composites films is discussed. This paper presents the developments made in the area of biodegradable S. urens short fiber/cellulose (SUSF/cellulose) composite films, buried in the soil and later investigated by the (POM), before and after biodegradation has taken place. SUSF/cellulose composite films have great potential in food packaging and for medical applications.


Subject(s)
Cellulose/metabolism , Green Chemistry Technology/methods , Sterculia/metabolism , Cellulose/isolation & purification , Cellulose/ultrastructure , Elastic Modulus , Microscopy, Electron, Scanning , Sodium Hydroxide/metabolism , Soil/chemistry , Temperature , Tensile Strength , Textiles/analysis , Thermogravimetry
15.
J Biomater Appl ; 10(3): 250-61, 1996 Jan.
Article in English | MEDLINE | ID: mdl-8667176

ABSTRACT

The creep behavior of acrylic dental base resins, at room temperature and at different loading conditions, has been examined. The behaviors of these resins are similar to that of "commercial perspex" at room temperature over a period of 1000 seconds. The pseudo-elastic moduli of the blends of PMMA VC show a significant increase compared with PMMA alone. The addition of the PVC powder to the heat-cured acrylic resin increased the time-dependent elastic modulus. This increase in elastic modulus is advantageous in the production of denture based resins of improv mechanical properties.


Subject(s)
Acrylic Resins/chemistry , Biocompatible Materials/chemistry , Polymers/chemistry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...