Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Macromol Rapid Commun ; 45(11): e2400010, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38458610

ABSTRACT

This work presents a new method for 4D fabrication of two-way shape memory materials that are capable of reversible shapeshifting right after manufacturing, upon application of proper heating and cooling cycles. The innovative solution presented here consists in the combination of highly stretched electrospun shape memory polymer (SMP) nanofibers with a melt electrowritten elastomer. More specifically, the stretched nanofibers are made of a biocompatible thermoplastic polyurethane (TPU) with crystallizable soft segments, undergoing melt-induced contraction and crystallization-induced elongation upon heating and cooling, respectively. Reversible actuation during crystallization becomes possible due to the elastic recovery of the elastomer component, obtained by melt electrowriting of a commercial TPU filament. Thanks to the design freedom offered by additive manufacturing, the elastomer structure also has the role of guiding the shape transformation. Electrospinning and melt electrowriting process parameters are set up so to obtain smart 4D objects capable of two-way shape memory effect (SME), and the possibility of reversible and repeatable actuation is demonstrated. The two components are then combined in different proportions with the aim of tailoring the two-way SME, taking into account the effect of design parameters such as the SMP content, the elastomer pattern, and the composite thickness.


Subject(s)
Nanofibers , Polymers , Polymers/chemistry , Nanofibers/chemistry , Polyurethanes/chemistry , Elastomers/chemistry , Smart Materials/chemistry , Biocompatible Materials/chemistry
2.
Nano Lett ; 23(21): 9719-9725, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37889876

ABSTRACT

The paper describes a comparative study of swelling processes in free-standing graphene oxide (GO) membranes and GO laminates encapsulated with epoxy glue. For free-standing graphene oxide membranes, a huge variation in d-spacing in the range of 8-12 Å depending on the ambient humidity and from 12 to >30 Å depending on the electrolyte type and its concentration was revealed using direct in situ and in operando XRD studies. Limited swelling at various humidity levels as well as in electrolyte solution with low constriction/expansion of epoxy-encapsulated GO is counterposed to that of free-standing graphene oxides. The swelling suppression was explained by both physical constriction and the intercalation of amines into GO laminates, which was proved by local EDX studies. This results in ion diffusivity variation for over 2 orders of magnitude in free-standing and constrained graphene oxide membranes and provides factual evidence for tunable sieving of ions with confined graphene oxides.

3.
Membranes (Basel) ; 12(11)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36422123

ABSTRACT

Here, we report on the fabrication of light-switchable and light-responsive membranes based on graphene oxide (GO) modified with azobenzene compounds. Azobenzene and para-aminoazobenzene were grafted onto graphene oxide layers by covalent attachment/condensation reaction prior to the membranes' assembly. The modification of GO was proven by the UV-vis, IR, Raman and photoelectron spectroscopy. The membrane's light-responsive properties were investigated in relation to the permeation of permanent gases and water vapors under UV and IR irradiation. Light irradiation does not influence the permeance of permanent gases, while it strongly affected that of water vapors. Both switching and irradiation-induced water permeance variation is described, and they were attributed to over 20% of the initial permeance. According to in situ diffraction studies, the effect is ascribed to the change to the interlayer distance between the graphene oxide nanoflakes, which increases under UV irradiation to ~1.5 nm while it decreases under IR irradiation to ~0.9 nm at 100% RH. The last part occurs due to the isomerization of grafted azobenzene under UV irradiation, pushing apart the GO layers, as confirmed by semi-empirical modelling.

SELECTION OF CITATIONS
SEARCH DETAIL
...