Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chemphyschem ; 20(4): 618-626, 2019 02 18.
Article in English | MEDLINE | ID: mdl-30623544

ABSTRACT

The excited state dynamics of Tris(2,2'-bipyridine)ruthenium(II) hexafluorophosphate, [Ru(bpy)3 (PF6 )2 ], was investigated on the surface of bare and sensitized TiO2 and ZrO2 films. The organic dyes LEG4 and MKA253 were selected as sensitizers. A Stern-Volmer plot of LEG4-sensitized TiO2 substrates with a spin-coated [Ru(bpy)3 (PF6 )2 ] layer on top shows considerable quenching of the emission of the latter. Interestingly, time-resolved emission spectroscopy reveals the presence of a fast-decay time component (25±5 ns), which is absent when the anatase TiO2 semiconductor is replaced by ZrO2 . It should be specified that the positive redox potential of the ruthenium complex prevents electron transfer from the [Ru(bpy)3 (PF6 )2 ] ground state into the oxidized sensitizer. Therefore, we speculate that the fast-decay time component observed stems from excited-state electron transfer from [Ru(bpy)3 (PF6 )2 ] to the oxidized sensitizer. Solid-state dye sensitized solar cells (ssDSSCs) employing MKA253 and LEG4 dyes, with [Ru(bpy)3 (PF6 )2 ] as a hole-transporting material (HTM), exhibit 1.2 % and 1.1 % power conversion efficiency, respectively. This result illustrates the possibility of the hypothesized excited-state electron transfer.

2.
Chemphyschem ; 18(21): 3047-3055, 2017 Nov 03.
Article in English | MEDLINE | ID: mdl-28840632

ABSTRACT

Highly efficient perovskite solar cells have been characterized by current-density/voltage measurements in the dark at varied scan rates. The results were compared to the solar cells without a hole-transporting layer to investigate the role of ultrathin hole-transporting layers in solar-cell function. The parameters of internal voltage, diode ideality factor, capacitive current, and capacitance were calculated from the current-density/voltage response of the cells in the dark. The results show that the absence of the hole-transporting layer can cause a large recombination current within the depletion region at the gold contact/perovskite interface, and thus affects the cell performance.

3.
ACS Omega ; 2(12): 9231-9240, 2017 Dec 31.
Article in English | MEDLINE | ID: mdl-31457437

ABSTRACT

Triphenylamine-based metal complexes were designed and synthesized via coordination to Ni(II), Cu(II), and Zn(II) using their respective acetate salts as the starting materials. The resulting metal complexes exhibit more negative energy levels (vs vacuum) as compared to 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (Spiro-OMeTAD), high hole extraction efficiency, but low hole mobilities and conductivities. Application of dopants typically used for Spiro-OMeTAD was not successful, indicating a more complicated mechanism of partial oxidation besides the redox potential. However, utilization as hole-transport material was successful, giving a highest efficiency of 11.1% under AM 1.5G solar illumination.

4.
Langmuir ; 31(39): 10913-21, 2015 Oct 06.
Article in English | MEDLINE | ID: mdl-26372851

ABSTRACT

Recently, one-dimensional nanostructures with different morphologies (such as nanowires, nanorods (NRs), and nanotubes) have become the focus of intensive research, because of their unique properties with potential applications. Among them, zinc oxide (ZnO) nanomaterials has been found to be highly attractive, because of the remarkable potential for applications in many different areas such as solar cells, sensors, piezoelectric devices, photodiode devices, sun screens, antireflection coatings, and photocatalysis. Here, we present an innovative approach to create a new modified textile by direct in situ growth of vertically aligned one-dimensional (1D) ZnO NRs onto textile surfaces, which can serve with potential for biosensing, photocatalysis, and antibacterial applications. ZnO NRs were grown by using a simple aqueous chemical growth method. Results from analyses such as X-ray diffraction (XRD) and scanning electron microscopy (SEM) revealed that the ZnO NRs were dispersed over the entire surface of the textile. We have demonstrated the following applications of these multifunctional textiles: (1) as a flexible working electrode for the detection of aldicarb (ALD) pesticide, (2) as a photocatalyst for the degradation of organic molecules (i.e., Methylene Blue and Congo Red), and (3) as antibacterial agents against Escherichia coli. The ZnO-based textile exhibited excellent photocatalytic and antibacterial activities, and it showed a promising sensing response. The combination of sensing, photocatalysis, and antibacterial properties provided by the ZnO NRs brings us closer to the concept of smart textiles for wearable sensing without a deodorant and antibacterial control. Perhaps the best known of the products that is available in markets for such purposes are textiles with silver nanoparticles. Our modified textile is thus providing acceptable antibacterial properties, compared to available commercial modified textiles.


Subject(s)
Anti-Bacterial Agents/chemistry , Biosensing Techniques , Nanostructures/chemistry , Textiles , Zinc Oxide/chemistry , Anti-Bacterial Agents/pharmacology , Catalysis , Microscopy, Electron, Scanning , Pesticides/analysis , Photochemistry , Zinc Oxide/pharmacology
5.
ACS Appl Mater Interfaces ; 6(20): 17694-701, 2014 Oct 22.
Article in English | MEDLINE | ID: mdl-25275616

ABSTRACT

In this study, we have proposed a new nanoparticle-containing test paper sensor that could be used as an inexpensive, easy-to-use, portable, and highly selective sensor to detect Cu(2+) ions in aqueous solutions. This disposable paper sensor is based on ZnO@ZnS core-shell nanoparticles. The core-shell nanoparticles were synthesized using a chemical method and then they were used for coating the paper. The synthesis of the ZnO@ZnS core-shell nanoparticles was performed at a temperature as low as 60 °C, and so far this is the lowest temperature for the synthesis of such core-shell nanoparticles. The sensitivity of the paper sensor was investigated for different Cu(2+) ion concentrations in aqueous solutions and the results show a direct linear relation between the Cu(2+) ions concentration and the color intensity of the paper sensor with a visual detection limit as low as 15 µM (∼0.96 ppm). Testing the present paper sensor on real river turbulent water shows a maximum 5% relative error for determining the Cu(2+) ions concentration, which confirms that the presented paper sensor can successfully be used efficiently for detection in complex solutions with high selectivity. Photographs of the paper sensor taken using a regular digital camera were transferred to a computer and analyzed by ImageJ Photoshop software. This finding demonstrates the potential of the present disposable paper sensor for the development of a portable, accurate, and selective heavy metal detection technology.

SELECTION OF CITATIONS
SEARCH DETAIL
...