Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 8(3): e59303, 2013.
Article in English | MEDLINE | ID: mdl-23527156

ABSTRACT

To facilitate analysis and understanding of biological systems, large-scale data are often integrated into models using a variety of mathematical and computational approaches. Such models describe the dynamics of the biological system and can be used to study the changes in the state of the system over time. For many model classes, such as discrete or continuous dynamical systems, there exist appropriate frameworks and tools for analyzing system dynamics. However, the heterogeneous information that encodes and bridges molecular and cellular dynamics, inherent to fine-grained molecular simulation models, presents significant challenges to the study of system dynamics. In this paper, we present an algorithmic information theory based approach for the analysis and interpretation of the dynamics of such executable models of biological systems. We apply a normalized compression distance (NCD) analysis to the state representations of a model that simulates the immune decision making and immune cell behavior. We show that this analysis successfully captures the essential information in the dynamics of the system, which results from a variety of events including proliferation, differentiation, or perturbations such as gene knock-outs. We demonstrate that this approach can be used for the analysis of executable models, regardless of the modeling framework, and for making experimentally quantifiable predictions.


Subject(s)
Algorithms , Immunity, Cellular/immunology , Information Theory , Models, Biological , Molecular Dynamics Simulation , Humans
2.
Article in English | MEDLINE | ID: mdl-18451431

ABSTRACT

The last several decades have witnessed a vast accumulation of biological data and data analysis. Many of these data sets represent only a small fraction of the system's behavior, making the visualization of full system behavior difficult. A more complete understanding of a biological system is gained when different types of data (and/or conclusions drawn from the data) are integrated into a larger-scale representation or model of the system. Ideally, this type of model is consistent with all available data about the system, and it is then used to generate additional hypotheses to be tested. Computer-based methods intended to formulate models that integrate various events and to test the consistency of these models with respect to the laboratory-based observations on which they are based are potentially very useful. In addition, in contrast to informal models, the consistency of such formal computer-based models with laboratory data can be tested rigorously by methods of formal verification. We combined two formal modeling approaches in computer science that were originally developed for non-biological system design. One is the inter-object approach using the language of live sequence charts (LSCs) with the Play-Engine tool, and the other is the intra-object approach using the language of statecharts and Rhapsody as the tool. Integration is carried out using InterPlay, a simulation engine coordinator. Using these tools, we constructed a combined model comprising three modules. One module represents the early lineage of the somatic gonad of C. elegans in LSCs, while a second more detailed module in statecharts represents an interaction between two cells within this lineage that determine their developmental outcome. Using the advantages of the tools, we created a third module representing a set of key experimental data using LSCs. We tested the combined statechart-LSC model by showing that the simulations were consistent with the set of experimental LSCs. This small-scale modular example demonstrates the potential for using similar approaches for verification by exhaustive testing of models by LSCs. It also shows the advantages of these approaches for modeling biology.


Subject(s)
Computer Simulation , Models, Biological , Animals , Biomedical Engineering , Caenorhabditis elegans/cytology , Caenorhabditis elegans/growth & development , Computational Biology , Databases, Factual , Female , Gonads/cytology , Gonads/growth & development , Male , Programming Languages , Software
3.
Curr Opin Struct Biol ; 13(3): 353-8, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12831887

ABSTRACT

Groups of related genes abound in large eukaryotic genomes. In such 'subgenomes', homology modeling carried out for a few genes will probably have relevance to the entire group. Subgenomes also afford unique ways of determining protein structural information. In addition to analyses based on the quantification of residue variability in paralogs, two-way comparisons, both within and among species, help to disclose functional amino acids. Comparative studies of gene families throughout the mammalian genome will also help elucidate the functional significance of single nucleotide polymorphisms in coding regions.


Subject(s)
Multigene Family/genetics , Receptors, Odorant/genetics , Sequence Homology , Animals , Binding Sites , Cluster Analysis , Conserved Sequence , Humans , Mammals/genetics , Polymorphism, Single Nucleotide , Synteny
SELECTION OF CITATIONS
SEARCH DETAIL
...