Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 606(Pt 2): 920-928, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34487939

ABSTRACT

HYPOTHESIS: The value of the maximal weight of a pendant drop formed at the end of a syringe needle is lower than the intensity of the corresponding capillary force. The balance of the external forces applied to the maximal pendant drop must be completed by the overpressure generated by the piston of the syringe. Inside the drop, the Laplace pressure corresponds to this overpressure. EXPERIMENTS: Pendant drops are made with three liquids and five different needle diameters. The influence of Laplace pressure on the maximal weight is experimentally highlighted by modulating the drop curvatures thanks to glass beads placed at the apex of the pendant drop. Their maximal weight and curvatures are measured by image analysis. FINDINGS: Experiments confirm that the balance of external forces must be completed by the force acting on the syringe piston. The overpressure on the piston has an impact on the drops via the Laplace pressure. A master curve between the mean curvature and the maximal volume of the pendant drops is observed. This result allows to validate an expression of the maximal weight which integrates the Laplace pressure. This work contributes to a better understanding of the maximal pendant drop properties and beyond, of the capillary phenomenon.

2.
J Agric Food Chem ; 58(12): 7126-34, 2010 Jun 23.
Article in English | MEDLINE | ID: mdl-20499936

ABSTRACT

Laser-induced breakdown spectroscopy (LIBS) has been widely used to evaluate the elemental composition (e.g., minerals or metal accumulation) on vegetal tissues. The main objective of this work was to differentiate wheat outer tissues during the grain ablation using LIBS and univariate/multivariate analysis. A high resolution spectrometer and a Nd:YAG laser (532 nm, 5 ns) was first used in order to easily identify atomic wheat emission lines. Then a pulsed excimer laser ArF (193 nm, 15 ns) and a compact fiber optic spectrometer was used to acquire LIBS spectral data from each pulse. Univariate and multivariate analyses (MW2D, PLS-DA) were carried out to provide more in depth information from the LIBS experiment. The number of pulses needed to ablate wheat tissues was successfully predicted by the supervised pattern recognition procedure. LIBS used in conjunction with multivariate analysis could be an interesting technique for rapid structural analysis of vegetal material.


Subject(s)
Spectrum Analysis/methods , Triticum/chemistry , Lasers , Spectrum Analysis/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...