Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bull Entomol Res ; 108(1): 58-68, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28490389

ABSTRACT

The lesser date moth (LDM) Batrachedra amydraula is a significant pest of date palm fruits. Previously, detection and monitoring of the pest was inaccurate due to high costs of sampling with lifting machines. We report a practical system for detection and monitoring of LDM based on pheromone traps and relevant models. Dose-response experiments with LDM pheromone traps indicated a 1 mg lure is optimal for monitoring. Delta traps with adhesive covering their entire inner surface gave the highest captures while trap colour was unimportant. Sampling pheromone traps throughout the night indicated male flight began at 1:00-2:00 and reached a peak 2 h before sunrise. Monitoring traps exposed all year long in Israel revealed three generations with different abundance. Trapping transects in a date plantation indicated interference from a monitoring trap became minimal at distances >27 m away. Inter-trap distances closer than this may lower efficiency of monitoring and mass trapping in control programs. Our estimate of the circular effective attraction radius (EARc) of a 1 mg delta trap for LDM (3.43 m) shows this bait is among the most attractive compared with baits for other insects. We developed encounter-rate equations with the pheromone trap EARc to model the interplay between population levels, trap density and captures that are useful for detection of invasive LDM and its control by mass trapping. The integrated methodologies are applicable to many pest species.


Subject(s)
Insect Control/methods , Moths , Pheromones , Animals , Larva , Male , Seasons
2.
Orig Life Evol Biosph ; 43(6): 501-26, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24362711

ABSTRACT

Lichens, which are symbioses of a fungus and one or two photoautotrophs, frequently tolerate extreme environmental conditions. This makes them valuable model systems in astrobiological research to fathom the limits and limitations of eukaryotic symbioses. Various studies demonstrated the high resistance of selected extremotolerant lichens towards extreme, non-terrestrial abiotic factors including space exposure, hypervelocity impact simulations as well as space and Martian parameter simulations. This study focusses on the diverse set of secondary lichen compounds (SLCs) that act as photo- and UVR-protective substances. Five lichen species used in present-day astrobiological research were compared: Buellia frigida, Circinaria gyrosa, Rhizocarpon geographicum, Xanthoria elegans, and Pleopsidium chlorophanum. Detailed investigation of secondary substances including photosynthetic pigments was performed for whole lichen thalli but also for axenically cultivated mycobionts and photobionts by methods of UV/VIS-spectrophotometry and two types of high performance liquid chromatography (HPLC). Additionally, a set of chemical tests is presented to confirm the formation of melanic compounds in lichen and mycobiont samples. All investigated lichens reveal various sets of SLCs, except C. gyrosa where only melanin was putatively identified. Such studies will help to assess the contribution of SLCs on lichen extremotolerance, to understand the adaptation of lichens to prevalent abiotic stressors of the respective habitat, and to form a basis for interpreting recent and future astrobiological experiments. As most of the identified SLCs demonstrated a high capacity in absorbing UVR, they may also explain the high resistance of lichens towards non-terrestrial UVR.


Subject(s)
Adaptation, Biological/radiation effects , Lichens/metabolism , Ultraviolet Rays , Adaptation, Biological/physiology , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...