Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
4.
Blood Adv ; 6(7): 2373-2387, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35061886

ABSTRACT

Philadelphia-like (Ph-like) acute lymphoblastic leukemia (ALL) is a high-risk subtype of B-cell ALL characterized by a gene expression profile resembling Philadelphia chromosome-positive ALL (Ph+ ALL) in the absence of BCR-ABL1. Tyrosine kinase-activating fusions, some involving ABL1, are recurrent drivers of Ph-like ALL and are targetable with tyrosine kinase inhibitors (TKIs). We identified a rare instance of SFPQ-ABL1 in a child with Ph-like ALL. SFPQ-ABL1 expressed in cytokine-dependent cell lines was sufficient to transform cells and these cells were sensitive to ABL1-targeting TKIs. In contrast to BCR-ABL1, SFPQ-ABL1 localized to the nuclear compartment and was a weaker driver of cellular proliferation. Phosphoproteomics analysis showed upregulation of cell cycle, DNA replication, and spliceosome pathways, and downregulation of signal transduction pathways, including ErbB, NF-κB, vascular endothelial growth factor (VEGF), and MAPK signaling in SFPQ-ABL1-expressing cells compared with BCR-ABL1-expressing cells. SFPQ-ABL1 expression did not activate phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling and was associated with phosphorylation of G2/M cell cycle proteins. SFPQ-ABL1 was sensitive to navitoclax and S-63845 and promotes cell survival by maintaining expression of Mcl-1 and Bcl-xL. SFPQ-ABL1 has functionally distinct mechanisms by which it drives ALL, including subcellular localization, proliferative capacity, and activation of cellular pathways. These findings highlight the role that fusion partners have in mediating the function of ABL1 fusions.


Subject(s)
Phosphatidylinositol 3-Kinases , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Child , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/metabolism , Humans , Phosphatidylinositol 3-Kinases/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Protein Kinase Inhibitors/pharmacology , Signal Transduction , Vascular Endothelial Growth Factor A
5.
Genome Biol ; 23(1): 10, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34991664

ABSTRACT

In cancer, fusions are important diagnostic markers and targets for therapy. Long-read transcriptome sequencing allows the discovery of fusions with their full-length isoform structure. However, due to higher sequencing error rates, fusion finding algorithms designed for short reads do not work. Here we present JAFFAL, to identify fusions from long-read transcriptome sequencing. We validate JAFFAL using simulations, cell lines, and patient data from Nanopore and PacBio. We apply JAFFAL to single-cell data and find fusions spanning three genes demonstrating transcripts detected from complex rearrangements. JAFFAL is available at https://github.com/Oshlack/JAFFA/wiki .


Subject(s)
High-Throughput Nucleotide Sequencing , Transcriptome , Algorithms , Gene Fusion , Humans , Sequence Analysis, DNA
6.
Mol Cell ; 81(10): 2094-2111.e9, 2021 05 20.
Article in English | MEDLINE | ID: mdl-33878293

ABSTRACT

Even though SYK and ZAP70 kinases share high sequence homology and serve analogous functions, their expression in B and T cells is strictly segregated throughout evolution. Here, we identified aberrant ZAP70 expression as a common feature in a broad range of B cell malignancies. We validated SYK as the kinase that sets the thresholds for negative selection of autoreactive and premalignant clones. When aberrantly expressed in B cells, ZAP70 competes with SYK at the BCR signalosome and redirects SYK from negative selection to tonic PI3K signaling, thereby promoting B cell survival. In genetic mouse models for B-ALL and B-CLL, conditional expression of Zap70 accelerated disease onset, while genetic deletion impaired malignant transformation. Inducible activation of Zap70 during B cell development compromised negative selection of autoreactive B cells, resulting in pervasive autoantibody production. Strict segregation of the two kinases is critical for normal B cell selection and represents a central safeguard against the development of autoimmune disease and B cell malignancies.


Subject(s)
Autoimmunity , Neoplasms/enzymology , Neoplasms/prevention & control , Syk Kinase/metabolism , ZAP-70 Protein-Tyrosine Kinase/metabolism , Animals , Antigens, CD19/metabolism , B-Lymphocytes , Calcium/metabolism , Cell Differentiation , Cell Transformation, Neoplastic , Enzyme Activation , Humans , Immune Tolerance , Lymphoma, B-Cell/enzymology , Lymphoma, B-Cell/pathology , Mice , Models, Genetic , NFATC Transcription Factors/metabolism , Neoplasm Proteins , Phosphatidylinositol 3-Kinases/metabolism , Protein Binding , Receptors, Antigen, B-Cell/metabolism , Signal Transduction
8.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Article in English | MEDLINE | ID: mdl-33531346

ABSTRACT

Unlike other cell types, developing B cells undergo multiple rounds of somatic recombination and hypermutation to evolve high-affinity antibodies. Reflecting the high frequency of DNA double-strand breaks, adaptive immune protection by B cells comes with an increased risk of malignant transformation. B lymphoid transcription factors (e.g., IKZF1 and PAX5) serve as metabolic gatekeepers by limiting glucose to levels insufficient to fuel transformation. We here identified aberrant expression of the lactonase PON2 in B cell acute lymphoblastic leukemia (B-ALL) as a mechanism to bypass metabolic gatekeeper functions. Compared to normal pre-B cells, PON2 expression was elevated in patient-derived B-ALL samples and correlated with poor clinical outcomes in pediatric and adult cohorts. Genetic deletion of Pon2 had no measurable impact on normal B cell development. However, in mouse models for BCR-ABL1 and NRASG12D-driven B-ALL, deletion of Pon2 compromised proliferation, colony formation, and leukemia initiation in transplant recipient mice. Compromised leukemogenesis resulted from defective glucose uptake and adenosine triphosphate (ATP) production in PON2-deficient murine and human B-ALL cells. Mechanistically, PON2 enabled glucose uptake by releasing the glucose-transporter GLUT1 from its inhibitor stomatin (STOM) and genetic deletion of STOM largely rescued PON2 deficiency. While not required for glucose transport, the PON2 lactonase moiety hydrolyzes the lactone-prodrug 3OC12 to form a cytotoxic intermediate. Mirroring PON2 expression levels in B-ALL, 3OC12 selectively killed patient-derived B-ALL cells but was well tolerated in transplant recipient mice. Hence, while B-ALL cells critically depend on aberrant PON2 expression to evade metabolic gatekeeper functions, PON2 lactonase activity can be leveraged as synthetic lethality to overcome drug resistance in refractory B-ALL.


Subject(s)
Aryldialkylphosphatase/metabolism , B-Lymphocytes/metabolism , Carcinogenesis/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Adenosine Triphosphate/metabolism , Animals , Aryldialkylphosphatase/genetics , Carcinogenesis/genetics , Cell Line, Tumor , Cells, Cultured , Glucose/metabolism , Glucose Transporter Type 1/metabolism , Humans , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Protein Binding
9.
Annu Rev Pathol ; 16: 323-349, 2021 01 24.
Article in English | MEDLINE | ID: mdl-33321055

ABSTRACT

Unlike other cell types, B cells undergo multiple rounds of V(D)J recombination and hypermutation to evolve high-affinity antibodies. Reflecting high frequencies of DNA double-strand breaks, adaptive immune protection by B cells comes with an increased risk of malignant transformation. In addition, the vast majority of newly generated B cells express an autoreactive B cell receptor (BCR). Thus, B cells are under intense selective pressure to remove autoreactive and premalignant clones. Despite stringent negative selection, B cells frequently give rise to autoimmune disease and B cell malignancies. In this review, we discuss mechanisms that we term metabolic gatekeepers to eliminate pathogenic B cell clones on the basis of energy depletion. Chronic activation signals from autoreactive BCRs or transforming oncogenes increase energy demands in autoreactive and premalignant B cells. Thus, metabolic gatekeepers limit energy supply to levels that are insufficient to fuel either a transforming oncogene or hyperactive signaling from an autoreactive BCR.


Subject(s)
B-Lymphocytes/metabolism , Cell Transformation, Neoplastic/metabolism , Receptors, Antigen, B-Cell/metabolism , Self Tolerance/physiology , Animals , Clonal Anergy/physiology , Humans
10.
Nature ; 588(7838): 491-497, 2020 12.
Article in English | MEDLINE | ID: mdl-33149299

ABSTRACT

Interferon-induced transmembrane protein 3 (IFITM3) has previously been identified as an endosomal protein that blocks viral infection1-3. Here we studied clinical cohorts of patients with B cell leukaemia and lymphoma, and identified IFITM3 as a strong predictor of poor outcome. In normal resting B cells, IFITM3 was minimally expressed and mainly localized in endosomes. However, engagement of the B cell receptor (BCR) induced both expression of IFITM3 and phosphorylation of this protein at Tyr20, which resulted in the accumulation of IFITM3 at the cell surface. In B cell leukaemia, oncogenic kinases phosphorylate IFITM3 at Tyr20, which causes constitutive localization of this protein at the plasma membrane. In a mouse model, Ifitm3-/- naive B cells developed in normal numbers; however, the formation of germinal centres and the production of antigen-specific antibodies were compromised. Oncogenes that induce the development of leukaemia and lymphoma did not transform Ifitm3-/- B cells. Conversely, the phosphomimetic IFITM3(Y20E) mutant induced oncogenic PI3K signalling and initiated the transformation of premalignant B cells. Mechanistic experiments revealed that IFITM3 functions as a PIP3 scaffold and central amplifier of PI3K signalling. The amplification of PI3K signals depends on IFITM3 using two lysine residues (Lys83 and Lys104) in its conserved intracellular loop as a scaffold for the accumulation of PIP3. In Ifitm3-/- B cells, lipid rafts were depleted of PIP3, which resulted in the defective expression of over 60 lipid-raft-associated surface receptors, and impaired BCR signalling and cellular adhesion. We conclude that the phosphorylation of IFITM3 that occurs after B cells encounter antigen induces a dynamic switch from antiviral effector functions in endosomes to a PI3K amplification loop at the cell surface. IFITM3-dependent amplification of PI3K signalling, which in part acts downstream of the BCR, is critical for the rapid expansion of B cells with high affinity to antigen. In addition, multiple oncogenes depend on IFITM3 to assemble PIP3-dependent signalling complexes and amplify PI3K signalling for malignant transformation.


Subject(s)
B-Lymphocytes/metabolism , Membrane Proteins/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol Phosphates/metabolism , RNA-Binding Proteins/metabolism , Signal Transduction , Animals , Antigens, CD19/metabolism , B-Lymphocytes/enzymology , B-Lymphocytes/immunology , B-Lymphocytes/pathology , Cell Transformation, Neoplastic , Female , Germinal Center/cytology , Germinal Center/immunology , Germinal Center/pathology , Humans , Integrins/metabolism , Membrane Microdomains/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Models, Molecular , Phosphorylation , Receptors, Antigen, B-Cell/metabolism
11.
Nature ; 583(7818): 845-851, 2020 07.
Article in English | MEDLINE | ID: mdl-32699415

ABSTRACT

Malignant transformation of cells typically involves several genetic lesions, whose combined activity gives rise to cancer1. Here we analyse 1,148 patient-derived B-cell leukaemia (B-ALL) samples, and find that individual mutations do not promote leukaemogenesis unless they converge on one single oncogenic pathway that is characteristic of the differentiation stage of transformed B cells. Mutations that are not aligned with this central oncogenic driver activate divergent pathways and subvert transformation. Oncogenic lesions in B-ALL frequently mimic signalling through cytokine receptors at the pro-B-cell stage (via activation of the signal-transduction protein STAT5)2-4 or pre-B-cell receptors in more mature cells (via activation of the protein kinase ERK)5-8. STAT5- and ERK-activating lesions are found frequently, but occur together in only around 3% of cases (P = 2.2 × 10-16). Single-cell mutation and phospho-protein analyses reveal the segregation of oncogenic STAT5 and ERK activation to competing clones. STAT5 and ERK engage opposing biochemical and transcriptional programs that are orchestrated by the transcription factors MYC and BCL6, respectively. Genetic reactivation of the divergent (suppressed) pathway comes at the expense of the principal oncogenic driver and reverses transformation. Conversely, deletion of divergent pathway components accelerates leukaemogenesis. Thus, persistence of divergent signalling pathways represents a powerful barrier to transformation, while convergence on one principal driver defines a central event in leukaemia initiation. Pharmacological reactivation of suppressed divergent circuits synergizes strongly with inhibition of the principal oncogenic driver. Hence, reactivation of divergent pathways can be leveraged as a previously unrecognized strategy to enhance treatment responses.


Subject(s)
B-Lymphocytes/cytology , B-Lymphocytes/metabolism , Cell Transformation, Neoplastic , Leukemia, B-Cell/metabolism , Leukemia, B-Cell/pathology , Signal Transduction , Animals , B-Lymphocytes/pathology , Cell Line, Tumor , Enzyme Activation , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Humans , Mice , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , Proto-Oncogene Proteins c-bcl-6/metabolism , Proto-Oncogene Proteins c-myc/metabolism , STAT5 Transcription Factor/metabolism
12.
Blood Cancer Discov ; 1(1): 18-20, 2020 07.
Article in English | MEDLINE | ID: mdl-34661138

ABSTRACT

Chimeric fusion proteins involving transcriptional regulators are a common feature in pre-B acute lymphoblastic leukemia (B-ALL). However, systematic dissection of the core regulatory circuits by which these fusions exert their oncogenic effects is still required. Using chromatin immunoprecipitation sequencing and robust functional assays, Tsuzuki and colleagues identify the core transcription factor network directed by MEF2D fusions in B-ALL. The new findings demonstrate how activation of MEF2D fusions ultimately converge on pre-BCR signaling and lipid metabolism to drive malignant B-cell transformation. See related article by Tsuzuki et al., p. 82.


Subject(s)
Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , MEF2 Transcription Factors/genetics , Oncogenes , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Signal Transduction/genetics
13.
Br J Cancer ; 118(7): 1000-1004, 2018 04.
Article in English | MEDLINE | ID: mdl-29531323

ABSTRACT

BACKGROUND: Zinc-finger protein 384 (ZNF384) fusions are an emerging subtype of precursor B-cell acute lymphoblastic leukaemia (pre-B-ALL) and here we further characterised their prevalence, survival outcomes and transcriptome. METHODS: Bone marrow mononuclear cells from 274 BCR-ABL1-negative pre-B-ALL patients were immunophenotyped and transcriptome molecularly characterised. Transcriptomic data was analysed by principal component analysis and gene-set enrichment analysis to identify gene and pathway expression changes. RESULTS: We exclusively detect E1A-associated protein p300 (EP300)-ZNF384 in 5.7% of BCR-ABL1-negative adolescent/young adult (AYA)/adult pre-B-ALL patients. EP300-ZNF384 patients do not appear to be a high-risk subgroup. Transcriptomic analysis revealed that EP300-ZNF384 samples have a distinct gene expression profile that results in the up-regulation of Janus kinase/signal transducers and activators of transcription (JAK/STAT) and cell adhesion pathways and down-regulation of cell cycle and DNA repair pathways. CONCLUSIONS: Importantly, this report contributes to a better overview of the incidence of EP300-ZNF384 patients and show that they have a distinct gene signature with concurrent up-regulation of JAK-STAT pathway, reduced expression of B-cell regulators and reduced DNA repair capacity.


Subject(s)
E1A-Associated p300 Protein/genetics , Oncogene Proteins, Fusion/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/epidemiology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Trans-Activators/genetics , Transcriptome , Adolescent , Adult , Child , Female , Gene Expression Profiling , Gene Expression Regulation, Leukemic , Gene Frequency , Genes, abl/genetics , Humans , Janus Kinases/metabolism , Male , Precursor Cell Lymphoblastic Leukemia-Lymphoma/mortality , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Recurrence , STAT Transcription Factors/metabolism , Signal Transduction/genetics , Survival Analysis , Young Adult
14.
Cell ; 173(2): 470-484.e18, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29551267

ABSTRACT

B cell activation during normal immune responses and oncogenic transformation impose increased metabolic demands on B cells and their ability to retain redox homeostasis. While the serine/threonine-protein phosphatase 2A (PP2A) was identified as a tumor suppressor in multiple types of cancer, our genetic studies revealed an essential role of PP2A in B cell tumors. Thereby, PP2A redirects glucose carbon utilization from glycolysis to the pentose phosphate pathway (PPP) to salvage oxidative stress. This unique vulnerability reflects constitutively low PPP activity in B cells and transcriptional repression of G6PD and other key PPP enzymes by the B cell transcription factors PAX5 and IKZF1. Reflecting B-cell-specific transcriptional PPP-repression, glucose carbon utilization in B cells is heavily skewed in favor of glycolysis resulting in lack of PPP-dependent antioxidant protection. These findings reveal a gatekeeper function of the PPP in a broad range of B cell malignancies that can be efficiently targeted by small molecule inhibition of PP2A and G6PD.


Subject(s)
Carbon/metabolism , Glucose/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Animals , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , Cell Line, Tumor , Cell Survival , Glucosephosphate Dehydrogenase/genetics , Glucosephosphate Dehydrogenase/metabolism , Glycolysis , Humans , Ikaros Transcription Factor/genetics , Ikaros Transcription Factor/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Oxidative Stress , PAX5 Transcription Factor/genetics , PAX5 Transcription Factor/metabolism , Pentose Phosphate Pathway , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Protein Phosphatase 2/deficiency , Protein Phosphatase 2/genetics , Protein Phosphatase 2/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Transcription, Genetic
15.
Cancer Genet ; 216-217: 86-90, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29025600

ABSTRACT

We report a novel somatic mutation in the kinase domain of JAK2 (R938Q) in a high-risk pediatric case of B-cell acute lymphoblastic leukemia (ALL). The patient developed on-therapy relapse at 12 months, and interestingly, the JAK2 locus acquired loss of heterozygosity during treatment resulting in 100% mutation load. Furthermore, we show that primary ALL mononuclear cells harboring the JAK2 R938Q mutation display reduced sensitivity to the JAK1/2 ATP-competitive inhibitor ruxolitinib in vitro, compared to ALL cells that carry a more common JAK2 pseudokinase domain mutation. Our findings are in line with previous reports that demonstrate that mutations within the kinase domain of JAK2 are associated with resistance to type I JAK inhibitors. Importantly, given the recent inclusion of ruxolitinib in trial protocols for children with JAK pathway alterations, we predict that inter-patient genetic variability may result in suboptimal responses to JAK inhibitor therapy in a subset of cases. The need for alternate targeted and/or combination therapies for patients who display inherent or developed resistance to JAK inhibitor therapy will be warranted, and we propose that kinase-mutants less sensitive to type I JAK inhibitors may present a currently unexplored platform for investigation of improved therapies.


Subject(s)
Janus Kinase 2/chemistry , Janus Kinase 2/genetics , Loss of Heterozygosity/genetics , Mutation/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Base Sequence , Child , Female , Gene Rearrangement/genetics , Humans , Protein Domains , Recurrence
16.
Cancer Lett ; 408: 92-101, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28866095

ABSTRACT

CRLF2-rearrangements (CRLF2-r) occur frequently in Ph-like B-ALL, a high-risk ALL sub-type characterized by a signaling profile similar to Ph + ALL, however accumulating evidence indicates genetic heterogeneity within CRLF2-r ALL. We performed thorough genomic characterization of 35 CRLF2-r cases (P2RY8-CRLF2 n = 18; IGH-CRLF2 n = 17). Activating JAK2 mutations were present in 34% of patients, and a CRLF2-F232C mutation was identified in an additional 17%. IKZF1 deletions were detected in 63% of cases. The majority of patients (26/35) classified as Ph-like, and these were characterized by significantly higher levels of MUC4, GPR110 and IL2RA/CD25. In addition, Ph-like CRLF2-r samples were significantly enriched for IKZF1 deletions, JAK2/CRLF2 mutations and increased expression of JAK/STAT target genes (CISH, SOCS1), suggesting that mutation-driven CRLF2/JAK2 activation is more frequent in this sub-group. Less is known about the genomics of CRLF2-r cases lacking JAK2-pathway mutations, but KRAS/NRAS mutations were identified in 4/9 non-Ph-like samples. This work highlights the heterogeneity of secondary lesions which may arise and influence intracellular-pathway activation in CRLF2-r patients, and importantly presents distinct therapeutic targets within a group of patients harboring identical primary translocations, for whom efficient directed therapies are currently lacking.


Subject(s)
Gene Expression Regulation, Leukemic , Gene Rearrangement , Interleukin-2 Receptor alpha Subunit/metabolism , Mucin-4/metabolism , Oncogene Proteins/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Receptors, Cytokine/genetics , Receptors, G-Protein-Coupled/metabolism , Female , Humans , Interleukin-2 Receptor alpha Subunit/genetics , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Mucin-4/genetics , Mutation/genetics , Oncogene Proteins/genetics , Philadelphia Chromosome , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Prognosis , Receptors, G-Protein-Coupled/genetics , Tumor Cells, Cultured
18.
Leuk Res ; 57: 57-59, 2017 06.
Article in English | MEDLINE | ID: mdl-28301819

ABSTRACT

miR-155 has emerged as one of the key microRNAs (miRNAs) involved in normal and malignant myelopoiesis, and high expression of this miRNA has been flagged as a strong independent prognostic marker in Acute Myeloid Leukemia (AML). While elevated expression of miR-155 has been associated with FLT3-ITD mutations, other mechanisms which may regulate expression of this miRNA in AML remain largely unknown. Here, we present new evidence that miR-155 may be a prime target of IL-3 signaling in primary AML cells. This finding, together with the increasingly apparent role for miR-155 in oncogenesis, and the upregulation of the IL-3 receptor alpha subunit in AML, lead us to propose this pathway may significantly contribute to the leukemic transformation.


Subject(s)
Interleukin-3/metabolism , Leukemia, Myeloid, Acute/metabolism , MicroRNAs/metabolism , Signal Transduction , Cell Transformation, Neoplastic , Gene Expression Regulation, Leukemic , Humans , Interleukin-3 Receptor alpha Subunit/genetics , Leukemia, Myeloid, Acute/genetics , Tumor Cells, Cultured , Up-Regulation
19.
J Leukoc Biol ; 96(1): 83-91, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24598054

ABSTRACT

Aberrant activation of ß-catenin is a common event in AML and is an independent predictor of poor prognosis. Although increased ß-catenin signaling in AML has been associated with oncogenic translocation products and activating mutations in the FLT3R, the mechanisms that activate ß-catenin in AML more broadly are still unclear. Here, we describe a novel link between IL-3 signaling and the regulation of ß-catenin in myeloid transformation and AML. In a murine model of HoxB8 and IL-3 cooperation, we show that ß-catenin protein levels are modulated by IL-3 and that Cre-induced deletion of ß-catenin abolishes IL-3-dependent growth and colony formation. In IL-3-dependent leukemic TF-1.8 cells, we observed increased ß-catenin protein levels and nuclear localization in response to IL-3, and this correlated with transcriptional induction of ß-catenin target genes. Furthermore, IL-3 promoted ß-catenin accumulation in a subset of AML patient samples, and gene-expression profiling of these cells revealed induction of WNT/ß-catenin and TCF4 gene signatures in an IL-3-dependent manner. This study is the first to link ß-catenin activation to IL-3 and suggests that targeting IL-3 signaling may be an effective approach for the inhibition of ß-catenin activity in some patients with AML.


Subject(s)
Cell Transformation, Neoplastic/metabolism , Interleukin-3/metabolism , Leukemia, Myeloid, Acute/metabolism , Neoplasm Proteins/metabolism , Signal Transduction , Wnt Signaling Pathway , beta Catenin/metabolism , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cell Line, Transformed , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Gene Expression Regulation, Leukemic/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Interleukin-3/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Mice , Neoplasm Proteins/genetics , Neoplasms, Experimental/genetics , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Transcription Factor 4 , Transcription Factors/genetics , Transcription Factors/metabolism , beta Catenin/genetics
20.
Differentiation ; 83(1): 47-59, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22099176

ABSTRACT

Granulocyte-macrophage colony stimulating factor (GM-CSF) promotes the growth, survival, differentiation and activation of normal myeloid cells and is essential for fully functional macrophage differentiation in vivo. To better understand the mechanisms by which growth factors control the balance between proliferation and self-renewal versus growth-suppression and differentiation we have used the bi-potent FDB1 myeloid cell line, which proliferates in IL-3 and differentiates to granulocytes and macrophages in response to GM-CSF. This provides a manipulable model in which to dissect the switch between growth and differentiation. We show that, in the context of signaling from an activating mutant of the GM-CSF receptor ß subunit, a single intracellular tyrosine residue (Y577) mediates the granulocyte fate decision. Loss of granulocyte differentiation in a Y577F second-site mutant is accompanied by enhanced macrophage differentiation and accumulation of ß-catenin together with activation of Tcf4 and other Wnt target genes. These include the known macrophage lineage inducer, Egr1. We show that forced expression of Tcf4 or a stabilised ß-catenin mutant is sufficient to promote macrophage differentiation in response to GM-CSF and that GM-CSF can regulate ß-catenin stability, most likely via GSK3ß. Consistent with this pathway being active in primary cells we show that inhibition of GSK3ß activity promotes the formation of macrophage colonies at the expense of granulocyte colonies in response to GM-CSF. This study therefore identifies a novel pathway through which growth factor receptor signaling can interact with transcriptional regulators to influence lineage choice during myeloid differentiation.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cell Lineage , Cytokine Receptor Common beta Subunit/metabolism , Macrophages/cytology , beta Catenin/metabolism , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Cell Differentiation , Cell Line , Cell Proliferation , Early Growth Response Protein 1/metabolism , Gene Expression Regulation , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Granulocytes/cytology , Mice , Mutation , Signal Transduction , Transcription Factor 4 , Wnt Signaling Pathway/genetics , beta Catenin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...